Nr.: FIN-002-2019

MStream: Proof of Concept of an Analytic Cloud Platform for
Near-Real-Time Diagnostics using Mass Spectrometry Data

Roman Zoun, Kay Schallert, David Broneske, Séren Falkenberg,
Robert Heyer, Sabine Wehnert, Sven Brehmer,
Dirk Benndorf and Gunter Saake

Arbeitsgruppe DBSE

Fakultat far Informatik
Otto-von-Guericke-Universitat Magdeburg




Nr.: FIN-002-2019

MStream: Proof of Concept of an Analytic Cloud Platform for
Near-Real-Time Diagnostics using Mass Spectrometry Data

Roman Zoun, Kay Schallert, David Broneske, Séren Falkenberg,
Robert Heyer, Sabine Wehnert, Sven Brehmer,
Dirk Benndorf and Gunter Saake

Arbeitsgruppe DBSE

Technical report (Internet)

Elektronische Zeitschriftenreihe

der Fakultat fur Informatik

der Otto-von-Guericke-Universitat Magdeburg
ISSN 1869-5078

Fakultat fir Informatik
Otto-von-Guericke-Universitdt Magdeburg




Impressum (§ 5 TMG)

Herausgeber:
Otto-von-Guericke-Universitat Magdeburg
Fakultat fur Informatik

Der Dekan

Verantwortlich fiir diese Ausgabe:
Otto-von-Guericke-Universitat Magdeburg
Fakultat fir Informatik

Roman Zoun

Postfach 4120

39016 Magdeburg

E-Mail: roman.zoun@ovgu.de

http://www.cs.uni-magdeburg.de/Technical_reports.html

Technical report (Internet)
ISSN 1869-5078

Redaktionsschluss: 16.08.2019
Bezug: Otto-von-Guericke-Universitat Magdeburg

Fakultat fur Informatik
Dekanat




MStream: Proof of Concept of an Analytic Cloud Platform for
Near-Real-Time Diagnostics using Mass Spectrometry Data

Roman Zoun * Kay Schallert David Broneske
University of Magdeburg University of Magdeburg University of Magdeburg
roman.zoun@ovgu.de kay.schallert@ovgu.de david.broneske@ovgu.de

Soren Falkenberg Robert Heyer Sabine Wehnert

University of Magdeburg
soeren.falkenberg@ovgu.de

Max Planck Institute for Dynamics of
Complex Technical Systems

University of Magdeburg
sabine.wehnert@ovgu.de

heyer@mpi-magdeburg.mpg.de

Sven Brehmer
Bruker Daltonik GmbH
sven.brehmer@bruker.com

Dirk Benndorf
Mazx Planck Institute for Dynamics of
Complex Technical Systems

Gunter Saake
University of Magdeburg
gunter.saake@ovgu.de

benndorf@mpi-magdeburg.mpg.de

ABSTRACT

A mass spectrometer is a device to extract biomarkers of biological
environments. Using these biomarkers, it is possible to diagnose
thousands of diseases with only one mass spectrometer. Unfor-
tunately, the mass spectrometry pipeline is sequential, including
hours of waiting time between the workflow steps. Additionally,
the data analysis is complex and needs qualified employees and
a stable infrastructure, which involves very high costs and effort.
Hence, only few hospitals use a mass spectrometer for diagnostics
with success.

In our work, we present a proof of concept of an analytical
platform for real-time analysis of mass spectrometry experiments.
In collaboration with Bruker Daltonik GmbH, we implemented
MStream, a cloud-based platform on the SMACK stack (Spark,
Mesos, Akka, Cassandra, Kafka) for scalable, streamlined protein
identification. Our evaluation shows superior performance in com-
parison to the state-of-the-art X!Tandem software package. Addi-
tionally, we minimize the effort of the hospital by allowing the full
analysis pipeline to be outsourced to our cloud platform.

CCS CONCEPTS

« Computer systems organization — Embedded systems; Re-
dundancy; Robotics; « Networks — Network reliability.

KEYWORDS

mass spectrometry, SMACK stack, fast data, cloud computing, real-
time diagnostic

Authors’ addresses: Roman Zoun, University of Magdeburg, roman.zoun@ovgu.de; Kay
Schallert, University of Magdeburg, kay.schallert@ovgu.de; David Broneske, University
of Magdeburg, david.broneske@ovgu.de; Soren Falkenberg, University of Magdeburg,
soeren.falkenberg@ovgu.de; Robert Heyer, Max Planck Institute for Dynamics of
Complex Technical Systems, heyer@mpi-magdeburg.mpg.de; Sabine Wehnert, Univer-
sity of Magdeburg, sabine.wehnert@ovgu.de; Sven Brehmer, Bruker Daltonik GmbH,
sven.brehmer@bruker.com; Dirk Benndorf, Max Planck Institute for Dynamics of Com-
plex Technical Systems, benndorf@mpi-magdeburg.mpg.de; Gunter Saake, University
of Magdeburg, gunter.saake@ovgu.de.

1 INTRODUCTION

Mass spectrometers are increasingly successful devices that digitize real
world samples. Mass spectrometry is used in the research fields proteomics,
metaproteomics and metabolomics [7] to identify protein biomarkers in
biological environments, such as oceans, humans, or microbial communities.
These biomarkers are similar to a fingerprint and can be used to identify
viruses or bacteria [3]. Thus, mass spectrometers can support the diagnosis
of known diseases such as cancer, Alzheimer’s disease, and even lupus [16,
20, 21]. However, only few university hospitals use a mass spectrometer for
diagnostics with success.

Due to frequent quality upgrades, mass spectrometers produce ever-
increasing amounts of data, resulting in terabytes of output data from a
single device. This data alone is useless without the analysis and processing
to derive the necessary insights. Due to the huge data sizes and the complex-
ity of the algorithms, the current sequential analysis pipeline takes hours
to complete: The mass spectrometer needs two hours for the measurement,
followed by a conversion step of up to one hour and an additional analysis
step that takes several hours to complete [8]. Additionally, qualified staff
has to maintain the software infrastructure (servers and special software
for the data analysis) in the hospital.

The state-of-the-art software tools for the downstream analysis, such as
X!Tandem, Andromeda or Mascot [1, 5, 22], work with file-based input data.
Accordingly, the algorithms are specialized to process the complete data
in a bulk processing fashion. Hence, state-of-the-art data analysis (protein
identification) needs all the experimental data at once. As a consequence, the
analysis step, which itself takes hours, is further delayed by another several
hours, because it has to wait until all the measurement data is available.
While these delays are tolerable in many research applications, in clinical
diagnostics they are not. Clinical diagnostics require an analysis in real-
time, so that the data can be processed during the measurement. Among
other benefits, such a real-time analysis could be stopped if a specific result
(specific disease such as cancer) is identified, thus reducing the overall time
of the diagnostics.

In our work, we focus on a tandem mass spectrometer from Bruker
Daltonik GmbH and present the proof of concept of MStream, an analytic
cloud-based platform to process mass spectrometer data in near-real-time.
This paper shares the challenges and experiences building the platform. Our
MStream prototype is deployed on a SMACK stack, a fast data implemen-
tation and works on single data items of the mass spectrometer. MStream
provides an asynchronous analysis pipeline, performing the protein identifi-
cation process as the measurement data arrives from the device. Evaluation



Technical Report, University of Magdeburg, 2019,

results show that MStream compares favorably to the state-of-the-art soft-
ware X!Tandem in terms of scalability and performance.

This paper is structured as follows: In Section 2, we explain the basics
of the mass spectrometry workflow and the architecture of our platform.
In Section 3, we describe the challenges and solutions of the four compo-
nents in our MStream system. In Section 4, we present our implementation.
Furthermore, we evaluate the whole pipeline, showing its scalability and
comparing it to the state-of-the-art tool X!Tandem. In Section 5, we discuss
the results of the evaluation. Finally, Section 6 concludes our paper.

2 BACKGROUND

In this Section, we provide some basic knowledge about mass spectrometry
data processing. First, we clarify the state-of-the-art of the mass spectrome-
try workflow. Afterwards we present the fast data architecture, followed by
an explanation of the data processing steps for protein identification and
validation.

2.1 Mass Spectrometry Workflow

As mentioned, the mass spectrometry field deals with analysis of protein
biomarkers. The workflow is sequential and the smallest parallelizable unit
is the whole experiment itself. Figure 1 shows the experiment pipeline.

X
Validation ﬁ
v X

Identification @

© Lail

Conversion ﬁ

Measurement : = Digitalization

®

Figure 1: State-of-the-art workflow of mass spectrometry ex-
periments with the biological preparation (1), the measure-
ment of the mass spectrometer (2) and the data processing
pipeline (3-5) [12-14].

After the sample is collected, the proteins are extracted (Figure 1-1). This
preparation is done in a laboratory and is not the focus of this work [6]. For
clinical sample preparation these steps are automated. Further the prepared
sample is measured in the mass spectrometer (Figure 1-2). The digitized
data is collected in a manufacturer specific RAW format. The duration of the
measurement is between one and two hours and results in a file of up to 40
GB, containing around 200,000 mass spectrometry datasets, the so called
mass spectra [17]. In the next step the RAW data is converted into a standard
file format (Figure 1-3). During the conversion, several pre-processing steps,
such as noise reduction and pre-filtering are executed in order to increase
the quality of the data for the further analysis. This step takes up to 1 hour
of the processing time. In the next step (Figure 1-4), the data is compared
to a sequence database such as UniProtKB or user defined sequence data.

Roman Zoun, et al.

The knowledge base is usually in a fasta file format [19]. The validation of
the hits is the last step of the process2 (Figure 1-5). Further analysis such as
visualizations, conclusions by physicians or biological researchers is done
based on those identification results [6, 7].

The central component of the data processing pipeline is the protein
identification step Figure 1-4. In the next Section, we explain the basic
algorithm and one state-of-the-art implementation.

2.2 Protein Identification

Since the incoming experiment data is a digital signal from real world
proteins, it is without any meaning and the data has to be identified com-
pared to a protein knowledge base. Therefore, the protein identification
approach is used to identify the measured spectra [18]. First, we explain
the general protein identification approach, followed by a state-of-the-art
implementation of the method.

2.2.1  Concept of Protein Identification. The protein identification compares
the real world data, which is represented as measured mass spectra from
the mass spectrometer and the theoretical data from the protein sequence
database, which contains already known real world proteins [18].

Peptides MS/MS spectra
Protein (protease fragments) of peptides

A 18— Il

ml/z
Identified
Matching —3 peptides/
proteins
Protein Peptides predicted in silico MS/MS pattern
database from proteolysis from theoretical peptides

= - & — [

Figure 2: A general peptide centric protein identification
method, which compares the experimental spectra and the
theoretical ones [18].

/z

In Figure 2, on the upper side the biological preparation of the sample
is represented. After the purification of the sample from a patient, only
proteins are left. Protein data consists of a protein sequence and the meta
information. The protein sequence is split (digested by specific enzymes)
into peptides. The enzymes cut the protein sequence on specific places in
the sequence. The mass spectrometer measures the peptides and gener-
ates their digital signal, which represents the experimental spectra. The
lower side shows the same procedure for the known proteins. The pro-
tein sequences from a protein sequence database get split into peptides,
using similar splitting rules and reconstructing each peptide into theoreti-
cal spectrum. This ensures the comparability of the data. The matching is
then between each peptide (theoretical spectrum) and each experimental
spectrum (peptide from the experimental sample), that results in a peptide-
spectrum-match (PSM). Due to the unsteady digital signal during the mea-
surement and the noises, the experimental spectrum can never be as good
as the theoretical one, so the comparison ends up in low similarity score.
The matching is similar to the comparison of a photography and a clip-art.
In conclusion, the scoring needs to be validated for true matches or false
matches with the idea that wrong hits have even lower score [18].

2.2.2  Protein Identification in X!Tandem. Currently, many protein identi-
fication software tools exist, such as Mascot or X!Tandem [1, 22]. Mascot
is a proprietary software from the company matrix science and X!Tandem



MStream: Proof of Concept of an Analytic Cloud Platform for Near-Real-Time Diagnostics using Mass Spectrometry Data

is an open source software, which is popular in the omics community and
provides very fast processing of the data. Both rely on the sequential data
processing pipeline. In this section, we present the processing of the data in
X!Tandem, because we could analyze and measure the process in the free
available source code.

The protein data comes from the hard disk, while the mass spectrometry
data is in the main memory. The software iterates once over the protein
database and multiple times over the spectra. The following steps are carried
out: firstly the software loads the experimental data at once, filtering out
low quality data, based on user-defined parameters. Secondly, the software
processes data from files batchwise. Thirdly, X! Tandem splits each protein
in smaller peptides and fourthly, the algorithm compares them with the
experimental spectra. Lastly, the best peptide-spectrum-matches are stored
in the end of the process in an XML-based result file [22]. The identified
PSMs need a validation to ensure the quality of the results.

2.3 Target Decoy Validation

The validation method processes each peptide-spectrum-match (PSM) and
tests whether the PSM is a true positive or false positive match. Since every
experimental data is individual, the state-of-the-art validation uses a target-
decoy approach [2]. The idea is to allow only small amount of wrong hits
in the result, using approximation of the false discovery rate (FDR).

In this method, the identification of experimental spectra against the
knowledge base results in target PSMs. Additionally, a created wrong knowl-
edge base is used to identify the experimental data again to produce decoy
PSMs. Later, the target and the decoy PSMs get stored in a collection, sorted
by the similarity score in descending order. Afterwards, the bottom PSMs
are iteratively removed until the desired false discovery rate is reached,
using the formula #Decoy PSMs/#Target PSMs for the FDR calculation in
every step. All removed target PSMs are false positives, the rest of the target
PSMs are valid hits.

A drawback of this approach is that it needs the whole experimental
data at once and is not applicable to our prototype, which requires real-time
processing.

2.4 TFast Data Architecture

To transform the mass spectrometry workflow into a streaming asynchro-
nous pipeline, we adapt it to the fast data architecture. The fast data archi-
tecture is a technology pipeline to process possibly infinite data streams in
near-real-time, using state-of-the-art big data technologies [23]. A popular
fast data implementation is the SMACK stack.

A general fast data architecture is designed as following: incoming data
enters directly as messages via HTTP or socket directly from a device or
microservice . A distributed cluster manages the incoming data . The data
stream is ether directly stored or analyzed by cloud processing engine .
The processing components communicate with the persistence layer . The
whole system runs on a cloud operating system in order to schedule the
components [23].

3 MSTREAM: CLOUD-BASED MASS
SPECTROMETRY DIAGNOSTIC PLATFORM

The mass spectrometry workflow consists of three main parts - the prepa-
ration of the experiment (Step 1 in Figure 1), the measurement (Step 2 in
Figure 1) and the data processing (Steps 3, 4 and 5 in Figure 1). In our work,
we focus on the data processing pipeline, because it is the bottleneck of
the sequential workflow. Our approach starts directly with the data dig-
itization step and parallelizes the measurement and the data processing
steps, bringing the fast performance of cloud-based data processing to a
mass spectrometer. In this section, we describe the challenges of the new
MStream system and how we solved them.

Technical Report, University of Magdeburg, 2019,

3.1 Challenges of MStream

For a better visualization of the challenges, we show in Figure 3 the concept
of our system. Our MStream platform needs a stream producer (Figure 3—
1), horizontally scalable scorer (Figure 3-2), distributed structured protein
knowledge base (Figure 3-3) and a smart validator of peptide-spectrum-
matches (Figure 3-4).

The challenge of the stream producer is to stream the mass spectrometry
data during the measurement without blocking the current measurement
process and converting the RAW data into a readable format. These steps
process each spectrum individually before sending it to the cloud-based
MStream system. The scorer, in turn, has to scale out horizontally to perform
near-real-time analysis even with high throughput or future devices with
higher resolution. For performance reasons, it is impossible to traverse all
peptides every time a spectrum arrives in the system. Therefore, a smart
indexing and aggregation technique is needed to reduce the search area of
the peptides. We use the criteria of current protein identification tools to
define an index for the sequence database. Furthermore, the smart validation
method should allow the MStream system to validate every PSM individually,
but without compromising on quality. Finally, the personal data security is
very important, especially for a remote cloud system.

The stream producer, the concept of protein data structuring and the
validation were already presented in prior work and we will give only an
overview of the results. The personal data security is solved by mapping
the experimental data into the stream producer to a specific patient without
revealing or sending any personal data to the cloud. The contribution of
this work is the scalable scorer and the overall evaluation of the MStream
analytic platform. In this Section, we will describe our solution for the
challenges, beginning with the validation, followed by the stream producer
and the persistence layer. Finally, we will describe the identification process
and the MStream system.

3.2 Streaming Validation of Peptide Spectrum
Matches

The validation is needed to trust the results but the state-of-the-art target-
decoy method is not applicable to streaming experiment data. For streaming
validation method, the goal is to classify a peptide-spectrum-match (PSM) as
valid or non-valid directly as they are generated. We solved this classification
problem using logistic regression, a machine learning technique. In prior
work, we showed that our solution can speed up the identification by a factor
of 1.8. At the same time, we reach an accuracy of over 95%, which is enough
for the most uses cases [9]. Additionally, the classifier is independent from
the experiment; it only has to be trained once for a given device. As a result,
our classifier helps us overcome the first challenge towards a stream-based
analysis workflow.

3.3 MSDataStream: Stream Producer for a
Bruker Mass Spectrometer

Since every manufacturer has its own file format to store the measured
data, we collaborated with the Bruker Daltonik GmbH to access the data.
We adapted the given API to read the data during the measurements in
batches without blocking the actual measurement. Furthermore, we added
pre-processing steps to increase the quality and reduce the noise of the data.
While in the current pipeline, the conversion into a readable format begins
after the measurement, we added the conversion into the stream producer
to transform each data, which we send to the cloud or write to a file. The
application runs locally on the mass spectrometer computer and collects the
data continuously. Further adapters for manufacturers are planned for the
future work and need additional collaborations with device companies [11].



Technical Report, University of Magdeburg, 2019,

Roman Zoun, et al.

( Preprocessed Protein -
DB

o

il Sskafka
'y
@ o

Peptide Spectrum Match

@ Spar

Validation

|_|_|_|_|_|_|__)

R

Classifier

o7

cassandra

J User Interaction

T Web Interface

(2)

Figure 3: Architecture of the MStream prototype, the analytic platform for real-time diagnostic of mass spectrometry data

3.4 Preparation of Protein Data

In order to implement the streaming identification process, we analyzed
other tools for protein identification. In Section 2.2, we described how
local software tools identify the experimental data, and highlighted two
limitations. The first requirement is that all the data should be available at
once and the second one is that the experimental data should be small and
fit into the main memory. In our system, the input data is not completely
available and we can access only a few spectra at the same time. Accordingly,
in our system, we iterate once over the mass spectrometry data and have
to access the protein and peptide sequence data for each spectrum. Due
to the data size of the protein knowledge base, we reduce the searching
area, using sorted index on the total mass of peptides, based on the work of
Juergen Cox et al. [5].

In our system we implement a radix tree as transformation object to
transform the sequence protein data into a column-based schema, using
features of the data as index family [10]. Our storage schema of the protein
data is specialized to reduce the amount of comparisons for the diagnostic
use case, selecting only data in a specific mass range. The index structure is
column-based, such as the one used by Apache Cassandra or in ELF [4, 15].
The schema of MStream has additional components for user management,
data management and results.

3.5 Online Processing of Streaming Spectra

The core of the identification process is the scoring function. It is imple-
mented in the Scorer component, which unites all other components of
the system. State-of-the-art tools process the experiment data in one bulk
during the protein identification step. In our architecture the experimental
spectra are not available completely, but arrive periodically in the cloud.
In the Scorer, the following components are required: the stream producer
(Section 3.3), the validator (Section 3.2) and the storage (Section 3.4).

Since we have to serve multiple clients in parallel, we add user-dependent
parameters to each incoming message. In this way, we separate each spec-
trum and use one message channel for the experimental data, making the
spectrum message the smallest parallelizable unit in the system. The pa-
rameters define the protein data for the identification and the validation
model.

The algorithm that each worker thread executes, is as follows: first, the
worker collects a batch of messages. Each message contains the textual rep-
resentation of the spectrum. Next, each spectrum of the batch is processed

individually. For each spectrum, the algorithm selects all peptides that must
be considered for a comparison from a specific protein knowledge base.
Hence, each peptide in the knowledge base is compared to the spectrum
and the match with the best score is kept as a result. Using our logistic
regression classifier, the best peptide-spectrum-match is validated. Finally,
the PSM and the spectrum are stored in our storage system.

Following the X!Tandem protein engine software, our scoring function is
based on the weighted dot product. In the future , other similarity functions
can be implemented in our system.

3.6 Putting It All Together

The state-of-the-art tools need the experimental data as a file and the pro-
tein data as a file, while our system has additional requirements on the
technical side and on the infrastructure level. When the data processing
starts, a protein knowledge base must already be loaded into memory (see
Section 3.4). Consequently, the protein database must be uploaded and pre-
pared for further processing in our system. Furthermore, we need a trained
model for the specific device that enables validation of the experimental
data (see Section 3.2). Finally, our stream producer must be installed on the
mass spectrometer side (see Section 3.3).

The system is deployed on the SMACK stack, an implementation of the
fast data architecture (see Figure 3). Additionally, a lightweight web UI
displays the results of an experiment during the identification process.

In Figure 4, we show the communication between the components and
how they operate in a sequence diagram. The stream producer asks for new
data periodically and starts to collect the data as the mass spectrometer
begins with the measurement. The producer processes and transforms every
experimental spectrum and sends the data to the message service. The
MStream worker with the scoring task subscribes to the message service
and asks for new data periodically. The subscription time of the scorer
defines in which time periods the system asks for a new data batch from the
message service. For the protein identification the scorer queries peptides
from the protein knowledge base and stores the results.

4 EVALUATION

From a biological perspective, our system provides the same results as other
protein search engines, since the similarity function and the pre-filtering
are based on the state-of-the-art approach. Hence, in our work, we focus
on the evaluation of the performance.



MStream: Proof of Concept of an Analytic Cloud Platform for Near-Real-Time Diagnostics using Mass Spectrometry Data

Mass Stream Message ‘ ’ MStream ‘ ’ . ‘
LpectrometeJ ’ Producer ‘ ’ Service Worker Protein DB
>
i collect collect
—
; process ;
— & s
send N ‘i query
" [k
*» — return
— I,
:

Figure 4: Sequence Diagram of MStream components.

This section is structured as follows: firstly, we present the evaluation
setup of the prototype. Secondly, we describe the experiments and, finally,
we present our results.

4.1 Evaluation Setup

In our work, we implemented the MStream system prototype, which we
use for the evaluation. We use a de.NBI OpenStack system to run 15 virtual
machines, using Harshi Corp Terraform for fast management of the infras-
tructure. Overall, our OpenStack project offers 160 virtual CPUs and 720GB
RAM. We use Apache Mesos as a cloud operating system. On Mesos, we
deploy all the services and components of MStream, such as Apache Cassan-
dra for the structured storage, HDFS to store our trained validation models,
Apache Spark for processing the data and scoring and Apache Kafka as a
message broker. For additional services, we use the Spring framework and
SparkJava on a Jetty application server. The stream producer software is a
JavaFX implementation and runs on the machine of the mass spectrometer.
For the state-of-the-art tool we use a local computer. As a local machine,
we use an ASUS UX360 with Intel 17-7500U/BGA with 2 cores and 16GB
DDR3-RAM.

For the evaluation data, we use PASEF experiments of ecoli bacteria with
57,758 spectra (5.37GB) to evaluate the scalability and to compare to the state
of the art. The data is generated by a PASEF TIMSTOF mass spectrometer
from Bruker Daltonic GmbH. As knowledge base of proteins, we adopt
the commonly used UniProt SwissProt knowledge base, containing 556,196
proteins, which result in 23,934,321 peptides. The chosen knowledge base
contains much more proteins than necessary for diagnostics of specific
disease, because we test the performance and the impact of the amount of
proteins to the platform. In the next Section, we describe the evaluation of
our MStream platform.

4.2 Evaluation Experiments

The goal of the evaluation is to show the applicability for near-real-time
identification that is needed for medical diagnostics. MStream performs in
near-real time if the overall processing rate in amount of spectra per second
is the same as the measurement rate of the mass spectrometer in amount of
spectra per second. Hence, we first analyze the persistence component (see
Section 3.4) regarding the data size that we create, using our index approach.
Additionally, we analyze how the indexing reduces the search range and
how fast our system queries the data from the persistence layer.

As we propose a central system, we observe if our system can handle
multiple devices in the same time, providing real-time analysis. Firstly, we
analyze the scoring time by measuring the performance of each scorer,

Technical Report, University of Magdeburg, 2019,

secondly, each step in a scorer and thirdly, the scalability factor of the
system.

Finally, we compare our system to the state-of-the-art protein identifica-
tion software X!Tandem to evaluate the competitiveness of MStream.

4.2.1 Evaluation 1: Structured Protein Knowledge Base. In this Experiment,
we present the results regarding the knowledge base component (see Sec-
tion 3.4). After uploading the data, in this case the SwissProt data, the
amount of data changes because we remove duplicates on the protein level
and on the peptide level. This reduces the amount of peptides from 23,934,321
to 14,579,004 non-redundant peptides. Due to the pre-calculation of the
charge property and the modifications for each peptide, the amount of
the peptides in the pepmass table rises to 111,183,434. Hence, our system
increases a 500MB protein sequence database to 17GB on hard disk.

All the peptide sequences in our storage are precalculated and indexed on
their mass and charge properties to reduce the search area and increase the
performance of the analysis step. The precalculation results in 111,183,434
peptide sequences stored in 4,814,243 rows, grouped by the charge and
by the total mass. The amount of peptides with charge 3 are in the range
of 170 and 1300 dalton . The peptides with charge 2 are in the range of
300 and 1950 dalton, while data with charge 1 is between 600 and 3700
dalton. Grouping by the charge attribute distributes the data across the
rows. Nevertheless, the amount of peptides is not equal, which results in
unbalanced query results. Of course, the amount of data returned by the
query for each spectrum has an influence on the runtime. We analyze this
influence next.

We test the query time to select the data with different tolerances on
their masses. The error tolerance is calculated in parts per million (ppm)
and depends on the given device. The range of 100 ppm can be used for
older devices, 20 ppm is for current devices, 10 ppm is for current high class
devices and 1 ppm is for future devices with even higher precision.

Query time and size for different tolerances
25 70

60
20

50

1 40

30

Time in ms

10

Amount of peptides

10

Error 1 ppm
(scaling 1x)

Error 10 ppm
(scaling 10x)

Error 20 ppm
(scaling 20x)

Error 100 ppm
(scaling 100x)

mm peptide query time  —e—scaling factor peptides

Figure 5: Query time and the query size regarding different
error tolerances.

In this experiment the data input rate is 189,42 experimental spectra
per second, which describes the rate of six to seven mass spectrometers
based on our experience with the Bruker mass spectrometer (On average
27 spectra per second). In Figure 5, we show the query time on the left
y-axis (orange bars) and the amount of the peptides on the right y-axis (blue
line), selected when querying for different tolerances. The evaluation is an
average of 50 runs and measures the time for each spectrum. For 1 ppm,
the query amount of rows that are selected is 12 on average, the amount of
peptides is around 250 and the query is performed in 2 ms. Using 100 ppm,



Technical Report, University of Magdeburg, 2019,

the query time increases to 19 ms, the amount of peptides grows to 14,420
selected out of 818 rows in average. For 10 ppm the query needs 4.5 ms in
average and 2,337 peptides are selected, while for 20 ppm the query took 7
ms with 4569 peptides on average. While the scaling factor from 1 ppm to
100 ppm is 100, the factor for the query time for these experiments is only
9.9, and the factor for the peptides is 57.7.

We show the influence of the tolerance to the query time and propose
to optimize this parameter for specific real world scenario. Especially for
repetitive measurements, such as diagnostics of a disease it is beneficial to
use the minimum tolerance, based on experience of the measurements. This
will reduce the calculation time and the costs for the analysis.

4.2.2  Evaluation 2: The Scorer Performance. In this section, we evaluate
the worker (the scorer) scalability and the performance of the MStream
system. Our goal is to analyze the possibility to operate with multiple mass
spectrometers and provide the results in near- real-time for every user.

To this end, on the one hand we increase the spectra input rate, which will
increase the amount of spectra per batch. On the other hand, we increase the
error tolerance, which will increase the amount of peptides. This experiment
runs with the error tolerance of 20 ppm and a subscription time of 10
seconds.

In the first experiment of the scorer evaluation, we use different spectra
input rates to simulate multiple devices and users. For each run, we measure
the time of each step of the scorer. The first step is the query of the peptides,
the next step is the scoring of the spectrum and the peptides, the third
step is the validation of the PSMs, followed by the insert functions of the
PSM and the spectrum. All runs achieve real-time processing with the time
deviation of the processing time of the last mass spectrometry data, usually
a few seconds. In this experiment, we increase the input rate and simulate
multiple devices, sending data at the same time. Our goal is to scale out
the worker to serve each user’s device in real-time. Therefore, we analyze
how the system adapts to additional mass spectrometers, which reflects the
individual performance of the worker and the overall performance of the
system.

In Figure 6, we present the results of this experiment. The measured
time is the average value in ms per worker and per spectra. We evaluate our
system with simulated input rates 41, 104, 196 and 727 spectra per second
on average. Due to the fact that one mass spectrometer sends in average 27
spectra per second, which can be processed by a single worker, the input
rates are generated using already measured experiments processing the
data with the stream producer (see Section 3.3). We measured the time for
each part in the algorithm to analyze the differences between different input
rates. Additionally, we measure the minimum number of workers that are
needed to perform the analysis in near-real-time.

In the chart in Figure 6, we can observe that the input rate does not
influence the single processing steps of the worker, but influences the
amount of workers. The individual performance deviation is around 1 ms.
We attribute this deviation to the scaled-out workers and the cloud latency.
Additionally, we can observe that a worker scales linearly with the input
rate. The processing speed of one worker with the parameters of these
experiment (using tolerance with 20 ppm) processes around 45 spectra
per second. Increasing this rate, it scales linearly without influence on the
individual worker performance. To the end, scorer spends most of its time
in the pairwise comparison.

The different sections of the algorithm are summed up to show the
overall time for one spectrum. The growing input rate increases the amount
of spectra in one batch, thus increasing the amount of comparisons of the
worker, but not the time of the single spectrum analysis. This bottleneck is
handled with out scaling the workers. Hence, the processing time of one
batch is increased and leads to longer waiting time of the last batch of the
mass spectrometer.

In the next chart, we show the performance of one worker, regarding
the error tolerance. This experiment we ran with an input rate of around

Roman Zoun, et al.

Average Worker Processing Time

60 20

18

50 16
40 "y
=
2 12 E

c

<30 10 €
5
£ €
= 8 Z
- £
6 2

10 4

2

0 0

41,53 (1x) 104,54 (2.4x) 196,15 (4.7x)

Stream Producer in Spectra per Second

727,27 (17.5x)

= peptide query time W scoring time mm validation time

psm insert time W spectrum insert time —Parallel Workers

Figure 6: Average runtime in ms depending on the data input
rate.

200 spectra per second in each run and a subscription time of 10. The input
rate simulates high utilization, which usually needs around 5 workers to
perform in real-time. In Figure 7, we show the average performance of a
single worker as a dependant of the error tolerance. For 1 ppm the scorer is
faster, since the amount of peptides is decreased. Additionally, the scorer
performs very fast with 335 spectra per second for one worker. However,
for 100 ppm one worker processes 15 spectra per second and one worker
cannot perform in real-time anymore. Hence, the scorer scales out up to 17
workers to reach near-real-time processing speed.

Worker Performance Regarding Error Tolerance

400 16000

350 14000
©°
c
S
$ 300 12000
5] 4]
2250 10000 2
— Q
S &
2200 8000 ‘5
£ 3
© Qo
2 150 6000 £

E]
g z
S 100 4000
1]
a
50 .- 2000
0 H . .
Error 1 ppm Error 10 ppm Error 20 ppm Error 100 ppm
(scaling 1x) (scaling 10x) (scaling 20x) (scaling 100x)

B Worker Performance amount peptides

Figure 7: Average worker performance in spectra per second
by increasing the error tolerance for the peptide query in
MStream.

For the next chart in Figure 8, we analyze the influence of the tolerance of
the single steps on the scorer. Again, we ran the experiments with different
error tolerance, measuring the time and related the scaling factors to the
amount of peptides. We can see that, the time for insertion and validation
does not change but the tolerance influences the amount of peptides. Accord-
ingly, the time for querying the peptides and scoring increases. The scoring
time scaling factor is 39 at 100 ppm. Hence, the scoring scales slowlier than
the tolerance regarding the scaling factor. This experiment shows that the



MStream: Proof of Concept of an Analytic Cloud Platform for Near-Real-Time Diagnostics using Mass Spectrometry Data

influence of the input rate is much higher with the weight of 1 than the
error tolerance with weight 0.17, regarding the scaling factors of the worker.

Average Performance Increasing the Error Tolerance

140 70
120 — 60
£ 100 50 8
£ 2
Q [
E 80 40 &
L <}
5
60 30 §
®
40 20 8

20

Error 20 ppm
(scaling 20x)

Error 10 ppm
(scaling 10x)

Error 100 ppm
(scaling 100x)

Error 1 ppm
(scaling 1x)
B peptide query time WM scoring time W validation time

psm insert time W spectrum insert time  ——scaling factor peptides

Figure 8: Average performance in ms by increasing the error
tolerance for the peptide query in MStream.

In the end, we show that increasing the error tolerance or increasing
the input rate affects the runtime of the worker and the overall system.
Additionally, we see that the scaling factors are different and the amount
of mass spectrometry data affects the process more than the amount of
peptides. Evaluation of different subscription times is not necessary, since
it changes the amount of spectra in a batch, which leads to the same results
as the evaluation of the input rate.

4.2.3  Experiment 3: Comparison to X!Tandem. After evaluating the MStream
platform, we now compare the runtime to the state-of-the-art tool X!Tandem,
which runs on a local machine and uses one thread, to the runtime of one
worker of our system. X!Tandem needs all mass spectrometry data as input
at the beginning, while our worker can start processing a single spectrum.
Nevertheless, we compare only the identification time.

In Figure 9, we show the average performance of a mass spectrometer,
based on the experience with a Bruker device (On average 27 spectra per
second), compared to the physical maximum of the device (100 spectra per
second). Those rates reflect the speed at which one device and possible
future devices deliver spectrum data.

X!Tandem using one thread processes 18 spectra per second on average
and our single worker processes 45 spectra per second. The search param-
eters were similar for both tools. Thus, our single worker outperformed
X!Tandem in single-threaded mode.

The comparison is not entirely fair since X!Tandem runs on a single
machine using one thread, and our system runs in a cloud environment with
at least 37 virtual CPUs. Based on the scaling factors from this experiment,
we can calculate when it is financially reasonable to switch to our system.
Our experiments show that on 58 CPUs and 990 spectra per second, our
system is more efficient regarding CPU utilization than X!Tandem. In other
words, our system becomes more CPU-efficient than X!Tandem if the data
comes from 30 or more mass spectrometers.

The results show that MStream is capable of performing near-real-time
analyses by efficiently querying the peptide data and scales out if needed. We
targeted the three parameters - error tolerance, input rate and subscription
time, to optimize the performance. Finally, we examined hardware resource
consumption, which is acceptable for a central cloud-based analytic platform
that serves thousands of mass spectrometers for clinical diagnostics.

Technical Report, University of Magdeburg, 2019,

Comparison of Spectra per Second Performance
120

100
80

60

40
) .
0

Dataset Ecoli

Performance in spectra per second

B MS Producer Max ~ ® MS Producer avg M X!Tandem M MSTream Worker

Figure 9: Comparison of the performance of X!Tandem,
MStream and a Mass Spectrometer.

5 DISCUSSION

In this section, we discuss the results of the evaluation, particularly focus-
ing on the goal to implement MStream as a central system for real-time
diagnostics.

In Section 4.2.1, we show that our data preparation greatly increases the
requirements on hard disk memory. If HDD space is limited, users have to
tailor the prepared data to the diseases that they actually intend to diagnose.
However, given the low prices for hard disks, we nevertheless argue that
the speed-ups enabled by our data preparation step justify the increase in
memory requirements.

Next, we examined the query performance and the query size regarding
different tolerances (see Figure 5). Our measurements show that MStream
scales linearly. The error tolerance property has the biggest influence on
the overall performance. Since the error tolerance depends on the precision
of the mass spectrometer, this should be considered during experiments
using the minimum tolerance.

As described in Section 4.2.2, MStream provides results in near-real-
time. In this experiment, we analyze the weighted impact of the number
of peptides and spectra. First, we increased the input rate to analyze the
out scaling and how it influences a single worker. We examined in Figure 6
that the scaling factor of the workers is linear and each worker delivers
the same performance during processing. In Figure 7, we examined the
influence of the peptide size on the worker performance. In Figure 8, we
show the influence on the individual components in the scorer. Finally, we
showed the number of spectra has a performance influence of 1, while the
peptide query influences the performance with 0.17. We propose to adjust
the pre-filtering methods in the stream producer (Section 3.3) for individual
diagnostic scenarios to reduce the calculation effort and costs on the cloud.

In our last experiment in Section 4.2.3, we compared our system to the
state-of-the-art software X!Tandem. Specifically, we compared the perfor-
mance of a single MStream worker to X!Tandem running in single-thread
mode. In this case, our system could process on average 45 spectra per
second, while X!Tandem processed only 17. Furthermore, MStream out-
performs X!Tandem with the input rate of 990 spectra per second (which
equals 36 mass spectrometry measurements in parallel) with respect to CPU
consumption. Hence, MStream clearly outperforms the state-of-the-art tool
X!Tandem as a central platform for real-time diagnostics.

For the clinical use case, a central platform reduces the personnel effort
for each clinic compared to local installations, which need qualified support
and hardware on site. In MStream, every spectrum is processed one by one,



Technical Report, University of Magdeburg, 2019,

making it possible to calculate the cloud costs of each scoring and map
them back to each patient. Patient privacy can be ensured by adding a local
de-identification step.

6 CONCLUSION

Research in biomarker detection has shown mass spectrometers to be great
diagnosticians with growing capabilities. With a single mass spectrometer
measurement, it is possible to diagnose thousands of diseases. However,
only few hospitals own mass spectrometers because the state-of-the art,
sequential data analysis workflow is slow, and maintaining the necessary
digital infrastructure requires highly qualified personnel. This motivated us
to evolve the data analysis of mass spectrometers to the cloud and break
through the standard sequential pipeline. As part of this evolution, we col-
laborated with Bruker Daltonik GmbH to develop an adapter that allows us
process the measurement data as it arrives from the mass spectrometer. We
further developed a stream-based validation method based on logistic regres-
sion. Additionally, we prepared the protein data and used a column-based
index structure to perform fast range queries on the protein data. Finally, we
connected the components in the MStream scorer and evaluated the system.
The result of these efforts is MStream, a proof of concept for a cloud-based
mass spectrometry analytic platform for clinical diagnostics that works in
near-real-time. The implementation is open source and available via GIT.

7 ACKNOWLEDGMENTS

The authors sincerely thank Niya Zoun, Ivayla Trifonova, Xiao Chen, Gabriel
Campero Durand, Marcus Pinnecke, Sebastian Krieter and Andreas Meister
for their support and advice. This work is partly funded by the de.NBI
Network (031L0103), the European Regional Development Fund (grant no.:
11.000s200.00.0 17 114347 0), the DFG (grant no.: SA 465/50-1), by the German
Federal Ministry of Food and Agriculture (grants no.: 22404015), by Bruker
Daltonik GmbH and dedicated to the memory of Mikhail Zoun.

REFERENCES

[1] John S Cottrell and U London. 1999. Probability-based protein identification by
searching sequence databases using mass spectrometry data. electrophoresis 20,
18 (1999), 3551-3567.

[2] Joshua Elias and Steven Gygi. 2010. Target-Decoy Search Strategy for Mass
Spectrometry-Based Proteomics. Methods in Molecular Biology 604 (2010), 55-71.

[3] Bernardo A.P. et al. 2017. Metaproteomics as a Complementary Approach to
Gut Microbiota in Health and Disease. Front Chem (2017).

[4] David Broneske et al. 2017. Accelerating multi-column selection predicates
in main-memory - the Elf approach. In IEEE International Conference on Data
Engineering (ICDE). 647 — 658.

[5] Jirgen Cox et al. 2011. Andromeda: A Peptide Search Engine Integrated into the
MaxQuant Environment. Journal of Proteome Research 10 (2011), 1535-3893.

[6] Pierre-Alain Maron et al. 2007. Metaproteomics: A New Approach for Studying
Functional Microbial Ecology. Microbial Ecology Volume 53 (2007), 486-2A$493.

[7] Robert Heyer et al. 2015. Metaproteomics of complex microbial communities in
biogas plants. Microbial Technology 8 (04 2015).

[8] Robert Heyer et al. 2017. Challenges and perspectives of metaproteomic data

analysis. Journal of Biotechnology 261, Supplement C (2017), 24 — 36. Bioinfor-

matics Solutions for Big Data Analysis in Life Sciences presented by the German

Network for Bioinformatics Infrastructure.

Roman Zoun et al. 2018. Streaming FDR Calculation for Protein Identication. In

Advances in Databases and Information Systems.

[10] Roman Zoun et al. 2019. Efficient Transformation of Protein Sequence Databases
to Columnar Index Schema. In International Workshop on Biological Knowledge
Discovery and Data Mining (BIOKDD-DEXA). IEEE.

[11] Roman Zoun et al. 2019. MSDataStream - Connecting a Bruker Mass Spectrometer

to the Internet. In Datenbanksysteme fiir Business, Technologie und Web.

https://www.murphyandson.co.uk/wp-content/uploads/2015/04/slider3
1-700x400.jpg. feb2019.

[13] http:themocracy.comwp-contentuploads201607Microbial

feb2019.

http://www.komabiotech.co.kr/www/product /pImages/sdspage1.jpg. feb2019.

Avinash Lakshman and Prashant Malik. 2010. Cassandra: A Decentralized Struc-

tured Storage System. SIGOPS Oper. Syst. Rev. 44, 2 (April 2010), 35-40.

[9

=

[12

Community.jpg.

=
LA

[16]

[17

[18

[19

[20]

[21]

[22]

Roman Zoun, et al.

Yahui Liu and et al. 2014. Biomarkers in Alzheimer’s disease analysis by mass
spectrometry-based proteomics. International journal of molecular sciences 15, 5
(may 2014), 7865-82.

Markus Lubeck and et al. 2017. PASEF on a timsTOF Pro defines new performance
standards for shotgun proteomics with dramatic improvements in MS/MS data
acquisition rates and sensitivity. Technical Report. Bruker Daltonik GmbH.
Renato Millioni and et al. 2013. Pros and cons of peptide isolectric focusing in
shotgun proteomics. Journal of chromatography. A 1293 (June 2013), 1aAT9.
NCBI. 2002. FASTA format documentation. https://blast.ncbi.nlm.nih.gov/Blast.
cgi?CMD=Web&PAGE_TYPE=BlastDocs&\DOC_TYPE=BlastHelp

Orthodoxia Nicolaou and et al. 2016. Biomarkers of systemic lupus erythemato-
sus identified using mass spectrometry-based proteomics: a systematic review.
Journal of cellular and molecular medicine 21, 5 (2016), 993-1012.

Darue A Prieto and et al. 2014. Mass spectrometry in cancer biomarker research:
a case for immunodepletion of abundant blood-derived proteins from clinical
tissue specimens. Biomarkers in medicine 8, 2 (2014), 269-86.

Craig Robertson and C Beavis Ronald. 2003. A method for reducing the time
required to match protein sequences with tandem mass spectra. Rapid Commu-
nications in Mass Spectrometry 17 17 (10 2003), 2310-2316.

Dean Wampler. 2016. Fast Data Architectures for Streaming Applications (first ed.).
OReilly Media.



	Sammelmappe1.pdf
	Kopie von TechnReport_Anlage1_neu_ISSN

	Kopie2 von TechnReport_Anlage1_neu_ISSN
	Abstract
	1 Introduction
	2 Background
	2.1 Mass Spectrometry Workflow
	2.2 Protein Identification
	2.3 Target Decoy Validation
	2.4 Fast Data Architecture

	3 MStream: Cloud-based Mass  Spectrometry Diagnostic  Platform
	3.1 Challenges of MStream
	3.2 Streaming Validation of Peptide Spectrum Matches
	3.3 MSDataStream: Stream Producer for a Bruker Mass Spectrometer
	3.4 Preparation of Protein Data
	3.5 Online Processing of Streaming Spectra
	3.6 Putting It All Together

	4 Evaluation
	4.1 Evaluation Setup
	4.2 Evaluation Experiments

	5 discussion
	6 Conclusion
	7 Acknowledgments
	References

