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Agile DSL-Engineering with Patterns in Ruby

Sebastian Giinther

Faculty of Computer Science
University of Magdeburg
sebastian.guenther@ovgu.de

Abstract. Domain-Specific Languages are becoming a cornerstone in
todays software development processes. Through abstracting twofold -
from the narrow details of a programming language, and at the same
time from the domain - DSL lead to a coherent representation. This has
many benefits: Developers gain a better understanding of the domain,
the domain concepts become entities in the program, and solutions to
application development problems are done at a higher abstraction level.
However, a DSL can never be viewed or used in isolation from other parts
of an application. It has to be carefully integrated into the development
process and into the usage of other languages. Therefore, DSL need to
be engineered with great care.

This report presents a novel approach to DSL engineering which com-
bines lightweight agile development process with implementation pat-
terns. Instead of producing large specifications of syntax and semantic of
languages beforehand, the agile process works in small iterations. Using
the dynamic Ruby programming language and its entire language infras-
tructure, the resulting DSL is open to modification and quick dynamic
adaption to the changing environment. Inside each DSL, several patterns
work to enable this flexibility. The patterns help with Language Model-
ing (provide executable form of the domain model), Language Integra-
tion (how to integrate the DSL into the application framework and with
other languages), and Language Purification (means to enrich domain-
expressiveness and reduce domain-foreign symbols or tokens). In sum-
mary, the developed process and its artifacts, concrete DSL, are tight
integrated extensions to current software engineering processes and help
with raising abstraction and productivity alike.

1 Introduction and Research Scope

Domain-Specific Languages (DSL) are languages tailored for a specific appli-
cation area [21]. They use domain-specific notations and abstractions [37] to
represent knowledge of a domain in the form of a language. LANDIN introduced
the idea of specific languages [26], and BENTLEY continued with describing little
languages for specific problem domains [3]. Since then, DSL have matured into a
common software engineering technique. A good overview of all research topics
in the DSL field can be found in [37].

Of particular interest in this paper is the question of how Domain-Specific
Languages can be designed and implemented. But there are different types of
DSL, which we distinguish.



— Origin FEaxternal DSL are developed as separate languages outside of the
scope of existing languages. Their syntax and semantics can be chosen freely,
but require to de velop and maintain a language infrastructure consisting of
interpreter, compilers and linkers. Internal DSL instead are based on an ex-
isting host language. Their syntax and semantics is predefined and restricted,
but can be customized in the boundaries of the host language. On the gaining
side, the existing language infrastructure, including tools, can be reused.

— Appearance: Teztual DSL emphasize textual characters and symbols. Graph-
ical DSL provide arbitrarily graphical symbols.

Our research focus are textual internal DSL - and whenever we speak of DSL
in the following, we mean this specific type. We use the dynamic programming
language Ruby as the host language. Ruby is a fully object-oriented dynamic
programming language with “duck typing” - Ruby has no type-concept, but sees
the method an object responds to as the “type” of an object [36]. It features rich
metaprogramming facilities and many options to reduce the syntax of its expres-
sions. Our empirical experiences have shown Rubys great capability to design
DSL. Also, various DSL stemming from domains such as database-connections,
restful web-services, markup languages, and testing, exist in the form of open-
source programs.

This report collects and refines our current experiences with implementing
Domain-Specific Languages. Up to now, we have designed a number of DSL,
from which two are selected for this paper: One for configuration of product
lines [18], and one for feature-oriented programming [19]. We now want to gen-
eralize our experiences and design a process how to engineer internal DSL with
Ruby. The process we present here has an agile nature. Steps like Domain De-
sign and Language Design are supported with concrete DSL expressions as test
cases for implementation. Each iteration implements small parts of functionality.
The inner strength of the designed DSL are the patterns and idioms used for
their implementation. We discovered three different abstraction level in language
engineering to which patterns can be applied: Language Modeling (provide ex-
ecutable form of the domain model), Language Integration (integrate the DSL
into the application framework and with other languages), and Language Pu-
rification (enriches domain-expressiveness and reduce domain-foreign symbols or
tokens).

The herein described process has a number of advantages. At first, it is do-
main independent - the process does not prescribe any particular domain, but
allows to model and design DSL for every domain the creators wish to have
a DSL for. Second, it nicely integrates into current software development pro-
cesses to utilize DSL as a solution to development challenges. Third, since we
describe internal DSL, the existing language infrastructure, including compiler,
interpreter, IDE, optimizer, libraries and other DSL, can be reused. This allows
focusing on language design, not compiler or transformation implementation.
And fourth, this approach keeps the DSL “fresh” and dynamic, making it easy
to adapt to new environments. In summary, this approach enables internal DSL,
which are designed with a scalable and predictable process, to become a corner-



stone in solving today’s software development challenges. And although we are
using the Ruby programming language, we are certain that the process and the
majority of patterns are supported in other dynamic programming languages as
well.

In section 2, we will first take a closer look at existing work on language
engineering for Domain-Specific Languages. We then continue with an explana-
tion of our DSL engineering process. Section 3 presents the catalog of language
engineering patterns. The language engineering process and the usage of pat-
terns is explained with two examples in section 4. In the discussion section 5,
we explain how the language engineering patterns fit into existing pattern types,
further process augmentations, and how much language independence from Ruby
the process possesses. Finally, a summary concludes this report. In this report
we apply the following formatings: keyword, language expressions or entities,
patterns.

2 Engineering Domain-Specific Languages

Literature about engineering Domain-Specific Languages is divided into the dif-
ferent DSL types. Engineering of external DSL is exemplified in [5], [33], [30]. A
recent trend are graphical DSL, e.g. [6] and [23]. These studies target external
DSL and thus only have limited use in this report. But they provide a generic
process how DSL can be engineered at all. Although their details differ, we can
summarize them as follows:

1. Analyze the domain and create a domain model.

2. Define the target language requirements. This includes the concrete syntax,
the DSL type (graphical, textual) and overall code-generation criteria (host
language, surrounding language framework).

3. Define and implement the necessary code generators. This includes analyzing
the host language, the target language, and mapping between their expres-
sions.

4. Generate the application code, check for the correctness of code transforma-
tions and use the code in production.

Compared to their external counterparts, internal DSL have a number of
advantages. Most important is that internal DSL have what we term a language
infrastructure. Compilers and interpreters can be reused, and even advanced
support tools, like IDEs and code optimizers, are ready to be used with little
or no modifications. While internal DSL can use such a language infrastructure,
external DSL are usually required to build one for them. Although tools like those
suggested in [6] and [23] provide support for writing transformations, developers
still need to map input to output transformation manually. In summary, steps 3
and 4 require much less effort when internal DSL are designed.

When we developed our two DSL, one for modeling software product lines
[18], and the other one for feature-oriented programming [20], we followed a
process only partially influenced by the above steps. Instead, this process used



agile development practices. We started with defining required behavior of our
DSL implementation or available language expressions, and implemented these
requirements. In small iterations, the behavior was extended. All the while, con-
stant refactoring kept the codebase clean [29] and extensible. The internal quality
of the code was high, but in retrospection, we missed the opportunity to pro-
vide a well-founded scheme of the DSL and its potential integration with other
frameworks and libraries. However, once we saw the need to integrate the DSL,
we had no problems in doing so - because the used approach had a thorough
foundation.

Another building block which we used unknowingly are patterns. In both
DSL, we reused certain mechanisms to provide an executable model of the do-
main, to extend DSL functionality in a modular way, to enable a high expres-
siveness of the DSL, and to provide different scopes where DSL expressions can
be used in programs. Unknowingly, we encountered problems and developed so-
lutions to them - and this is what patterns are about [14].

With this background, we want to develop an agile process for engineering
internal Domain-Specific Languages. We combine reflections upon our experi-
ences, exploration of literature about external DSL (as mentioned) and internal
DSL [10], usage of existing DSL, and a better understanding of the importance
of DSL usage and DSL engineering in application development. The principles
guiding this process are (1) well-founded scheme of the DSL and the environ-
ment it is used in (other frameworks, DSL, technology), (2) agile steps providing
per iteration just the required functionality, (3) constant refactoring to keep the
codebase clean and extensible, (4) pattern knowledge to have a full understand-
ing of problems and their solution in language engineering, (5) open form so that
each step takes a specific form dependent on the domain, technology, language
and development goals. In the following, we detail the three steps of our process:
Domain Design, Language Design, and Language Implementation.

2.1 Domain Design

The first goal is to develop a deep-founded understanding of the domain for which
the DSL is to be designed. This step begins with collecting various handbooks,
documentation, systems and general stakeholder expressions - this is called do-
main material. The material is studied to produce either formal or informal
expressions about the domain. One form is e.g. to use variability and common-
ality analysis and collect statements in natural-language about the domain [10].
Other forms are so-called domain engineering techniques like FODA (Feature-
Oriented Domain Analysis) [11]. If there is no domain material, but only experts
having the required knowledge, creative techniques like brainstorming or more
formal questionnaires, checklists etc. [9] are usable. We emphasize the impor-
tance of this phase. A profound understanding (not necessarily a “complete”
specification!) of the domain protects against undesired changes in later steps.
Special attention should be given to seemingly contradicting statements - they
point at misunderstandings of the domain.



The gained knowledge is then refined to a domain model. A domain model
consists of the concepts, attributes and their relationships to each other. The col-
lected statements contain singular and compound expressions about the concepts
and the relationships. Problematic are possible language defects like synonyms,
homonyms and more [27]. The domain needs a clear and disambiguate repre-
sentation so that all stakeholder understand the same concept. It is essential
to form coherent knowledge about the domain. While this material defines the
static structure, we must also model the dynamic structure of the domain. This
step regards the status of the domain concepts, respectably the domain objects,
and how they interact with each other with operations. Following the open form
principle, the domain model must take a form specific in and useful to the in-
dividual engineering process. One suggestion is to use the UML class diagram
for the static structure of entities, attributes and relationships, and the state
diagram to represent the different status of the domain.

The Domain Design phase performs the whole DSL engineering. The gained
knowledge and especially models of the static and dynamic structure are the
input to the next phase.

2.2 Language Design

In the Language Design phase, we develop the syntax for a language in which
the domain concepts, attributes, relationships and operations can be expressed.
Of immediate attention is the language we are designing in. The syntactical
constraints of the host language can be a burden to the DSL. Tokens and ex-
pressions, which have no meaning in the domain, but are required by the host
language (e.g. semicolons, certain brackets, statement modifiers), weaken the
language expressiveness. It is important to know these limitations beforehand.

Then we begin to formulate expressions in the domain. Expressions need to
be valid statements in terms of the host language. Two principal approaches
are available. The first one is to design expressions without the host-language
in mind, and to make them host-language compatible afterwards. The second
approach works vice versa - taking host-language expressions, and simplifying
them to increase the language expressiveness. A useful metaphor is that of a
language game. The philosopher Wittgenstein used language games to determine
the grammatical correctness of expressions [25]. Such language games can be used
with a compiler or interpreter. If an expression raises only semantic errors, then
it is a syntactical valid expression of the host language. This step is repeated
until a form of the language has been found. All working example expressions
are collected to start the Language Implementation.

2.3 Language Implementation

Having the target expressions available, the task is now to implement them. The
basic process of this phase is the agile process mentioned in the current section’s
introduction. It uses a form of behavior driven development: First provide a test,
and then its implementation. This test can be any language characteristic. In



the very beginning of the implementation, we can easily use ezample expressions
as test cases, and build an implementation which has representations of the
objects and operations of the expression. Tests are always written first. After
passing the test, the existing code is refactored - with the goal of providing
a minimal implementation. Successive iterations continue with writing the next
test to extend the parsable expressions or other language capabilities. We applied
this process in both of our DSL and used RSpec', a behavior-driven development
library, for the tests.

While using this process, we worked on three different abstraction levels.
These levels came first to our awareness when we tried to identify and group
the patterns which we unknowingly used in the implementation process. As we
are aware now, it is advisable to plan the used patterns beforehand since they
influence each other. The abstraction levels are the following.

— Language Modeling The very beginning of implementing a DSL is to
design a implementation of the domain model. This model names concepts,
attributes, and operations in the domain. All names form the vocabulary of
the language, and they should form the basic structure of the DSL. The task
is to map the domain model into a suitable implementation using object-
oriented mechanisms.

— Language Integration Although a standalone DSL has a value on its own,
the option to use with other DSL, libraries and frameworks provides even
more benefits. Mechanisms of integration have to be found in order to max-
imize the effectiveness of the DSL.

— Language Purification Syntactical constraints of the used host language
are a burden to the DSL. Tokens which have no meaning in the domain,
but are required by the host language, weaken the language expressiveness.
Language Purification is the task of eliminating non-domain relevant tokens
by providing syntactical improvements or alternatives - thus raising the lan-
guage expressiveness.

2.4 Summary

With the DSL engineering process, developers first gather knowledge of the do-
main, then collect a number of desired language expressions, and finally im-
plement the DSL. The process has an agile nature - phases are encountered in
iterations, and each time deepens the knowledge and understanding of the do-
main. Using a behavior-driven approach guarantees a complete test suite which
enables continuous refactoring to keep the code base clean and minimal. Patterns
help to structure the DSL according to three abstraction levels. Finally, due to
the open form principle, each step embodies the notations, forms and models
which the DSL engineers are best accustomed to. This helps to implement and
use the DSL successfully. In »Figure 1 we see a graphical summary of the DSL
engineering process.

! http://www.rspec.info/
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3 Patterns in Language Engineering

The original idea of patterns was introduced in the book by ALEXANDER ET
AL. The authors introduced the idea to capture problems and their solutions as
building mechanisms for both large and small structures [1]. Combining patterns
leads to elaborate architectures. Although ALEXANDER ET AL. spoke of patterns
for town and cities, their ideas expanded to other domains as well. One of the
first work on patterns in computer science, by GAMMA ET AL., defined that
a pattern ”... systematically names, explains, and evaluates an important and
recurring design in [...] systems” [15]. Each design targets a specific problem
in application development - like to provide alternatives for different sorting
algorithms or creating customized objects - and a abstract definition of their
solution so that they can be reused in different contexts [14]. Thus, patterns are
a way to record mature and proven design structures [8]. Patterns have to be
distinguished from idioms. While patterns are language-independent, idioms are
language specific abstractions from problems and can not be used outside their
language [11].

Patterns are usually described with a structure that names and classifies each
one, describes its intent and motivation, details structure and the participants,
and discusses examples [15] [14]. This broad description is chosen deliberately.
By discussing various aspects of each pattern, the context in which to apply it
successfully becomes known to the developers. But patterns can not prescribe
where to use them - their concrete form must always be crafted per context
and per application. These thoughts are summarized as “capturing the intent
and map it to an application”, which is the task of pattern users according to
GREENFIELD ET AL. [17].

Still patterns help more then that by establishing a vocabulary which can
be used to describe complex architectures [14]. Eventually, this evolves to a
pattern language. A pattern language details the relationships between different
patterns to use them more systematically [17]. Although patterns are usually
independent of each other, one choice can lead to another, closely related pattern
[14]. Elaborating complex relationships can result in whole maps as shown in [2].
Such views on systems and pattern dependencies provide a rich vocabulary.

In order to use patterns effectively, some requirements must be met: a) the
opportunity for the pattern must be understood, b) the elements of the pattern
have to be mapped to the application, ¢) the pattern is restated in the context of
the application, and d) the evolving software must keep its links to the patterns
[17]. The core requirement is that the developer knows of the patterns and has
enough experience to apply them.

In summary, patterns are means to solve recurring problems with common
solutions. While we implemented two DSL on our own, we were unwarily using
patterns to solve language engineering problems on the three abstraction levels
proposed in 2.3. For the abstraction levels Domain Design and Language Design,
patterns were used, but the Language Implementation and Support was done
with language specific idioms. To avoid to refer to “patterns and idioms” all the



while, we will call them pattern uniformly, and refer specifically to idioms if we
need to distinguish them.

For finding patterns and idioms, we did not stick to our empirical gained
knowledge alone, but also studied the open-source DSL HAML? (HTML), SASS?
(CSS), DataMapper* (database connector), and Sinatra® (web application frame-
work). Further analyzed material is [36], [13], [31], and [7].

Patterns are explained with a structure resembling those suggested by FOWLER
[14].

Name Name of the pattern

— Intent Short summary

Form Presentation of the patterns appearance, usually an example
Description and Discussion Full explanation of the pattern and usage
guideline

3.1 Language Modeling Patterns

1. Command

Provide objects which represent expressions of the DSL

1| class Command
2 def execute
3 raise "MethodNotImplementedError"
4 end
5 end
6
7| class FileBackup < Command
8 def initialize(filename)
9 @filename = filename
10 end
11
12 def execute
13 content = File.read @filename, "r"
14 backup_filename = @filename + Date.today.to_s
15 File.open(backup_filename, "w") { [file| file.write content }
16 end
17| end
- J

The command pattern, as originally introduced in [15], defines an abstract
Command class which has an execute method. Objects representing concrete
commands should subclass the Command class and implement the behavior.
Commands are executed by calling the method execute.

This pattern allows implementing domain functionality quickly, but the re-
sulting form has several drawbacks. First of all, requiring a call of execute
does not improve the language expressiveness. Second, combining commands
to larger expressions is not possible - each of them does only one thing. And

2 http://haml-lang.com/
3 http:/ /sass-lang.com/

4 http://datamapper.org/
® http://sinatrarb.com/



third, since each command requires an own class, extensive amount of com-
mands also bloats the programs namespace with too many objects.

In total, the command pattern should be used by small DSL where quick
results are necessary. Furthermore, it may be possible to use some Language
Purification idioms to improve the language expressiveness. When one thinks
of the agile process to engineer DSL, we also see that any DSL can start as
a command pattern, and be improved later to a more robust form.

2. Domain Objects

Use classes and modules to provide all domain objects

1| module Feature
2
3| end
4
5| class Search
6 is Feature
7| end
8
9| class Algorithm
10 is Feature
11| end
- J

Classes and modules can have arbitrary names - with the restriction of a
leading capital letter and no whitespace. This makes them perfect for rep-
resenting domain objects. Attributes can e.g. be defined as instance vari-
ables, or yet more comfortable with the Module#attr_reader metaprogram-
ming method. The backbone of a consistent and expressive DSL is set with
this pattern easily.

To the many benefits of this patterns belongs that the whole domain is ex-
pressed with its terms being objects themselves. Every programmer directly
works with these named entities - so he gains his domain understanding while
programming. In reducing the potential for misunderstanding, the applica-
tion is more likely to do that what it is intended to do. Another benefit is
that Ruby’s flexible syntax makes combining objects in expressions straight-
forward. And even more so, it encourages developers to do that, thereby
leading to an explorative form of the mentioned language games.

There is not really a disadvantage to this approach. Of course, we need
to provide class definitions. But like shown in the above example, these
definitions are very minimal.

10



3. Domain Operations

Implement methods which reflect domain operations

1| module Feature

2 def configure(property = String, value = object, *args = [], &block)
3 S

4 end

5| end

Domain objects are not static entities. Their status can be changed, and
they can access and change other objects too. These changes take the form
of domain operations. A straightforward approach is to implement the oper-
ations as methods of Ruby objects. Any interaction between the objects can
be modeled in such a way.

Method declaration in Ruby allows many options. Using them greatly en-
hances the DSL engineers’ ability to create the needed “look” of his language.
Therefore, we explain the options in great detail. Consider the following
method declaration.

[

def test_method(default_string = "", default_integer = 0, *optional,
&block)
puts default_string
puts default_integer
puts optional.join " | "
yield block
end

S UL W N

This example has three types of arguments.

— Default values Provide default values via assignment. If no argument
is given, the values take the provided default value.

— Optional arguments Use one asterisk with any variable name. This
argument becomes an array and receives all exceeding arguments passed
to the method.

— Block Use an ampersand and a variable name. The method receives a
block object, which can be called using the yield semantics®. Further-
more, the block is available as a Proc object inside the methods’ body.

Take a look at the following example of calling test_method and the resulting
output.

1| test_method "task_num", 10, "task A", "task B", :open do puts "Done" end
2| > task_num

3] > 10

4| > task A | task B | open

5| > Done

Combining Domain Objects with Domain Operations is a best-practice ap-
proach for domain modeling in a DSL. Having an executable form of the
domain knowledge is a mediator between domain and application develop-
ment which should not be underestimated. The flexible method declarations

5 Calling yield with a given block, executes the code contained in the block. Argu-
ments to yield are passed as arguments to the block [36].
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make it even easier to define methods which take zero or an unlimited num-
ber of parameters. Using Keyword Arguments further clarifies the operation
by being verbose about the arguments structure.

One hint to the type of objects on which Domain Operations should be de-
fined. The scope of classes is limited to this class, its subclasses and instances.
But using modules allows mix-in any functions into any object. This allows
providing DSL expressions at the top-level scope, or at a finer granular level.
More details hereto are found in the next section, see the pattern Language
Modules.

3.2 Language Integration Patterns

1.

O UL W N

Hooks
Use pre- or self-defined hooks to execute arbitrary code at changing program
status
def method_added (name)
substitute (name, :instance) if FeatureResolver.violation
end
def singleton_method_added(name)
substitute (name, :class) if FeatureResolver.violation

end

Any application has two specific call stacks. The first one is called application
call stack and represents the unique composition of objects and modules
that the application provides. The second one is the language call stack
which is represented with the language-internal objects and methods. Using
either pre-defined hooks or self-implemented hooks, both call stacks can be
modified. DSL can use these hooks to touch deeply into call execution. These
hooks are implemented as normal methods - and can thus be modified to
execute arbitrary code.

As an example, our FOP implementation rbFeatures [20] uses two hooks
to intercept method declaration: method_added and singleton_method_added.
Only if the current feature configuration satisfies the feature model, the
method is defined with its normal body - if not, the body throws a custom
error telling the user which features activation status prevents the calling.
This mechanism uses the language call stack, and as thus we were able to
use rbFeatures both with the Sinatra and the Rails” framework without
further modification. More hooks for augmenting the language call stack are
explained in [19].

It is difficult to determine what kind of hooks a DSL needs to interact with
other applications or DSL. In general, the DSL should provide a place where
arbitrary Ruby code can be executed. These hooks are the entry point for
any specific implementation which the environment might request. And that

" http://rubyonrails.org

12



O U W N

is the disadvantage: There is no further advice at how to use hooks for spe-
cific situations. They need to be experienced and documented in the future.

Language Modules

Provide parts of a DSL as reusable modules

module Operations
def + feature
Q@temp_active = false
(+ feature)
end

end

Modules allow defining methods in one place, and to use them anywhere else:
Within the module itself, included inside another module, or included inside
a class. All inclusions are just pointers to the one module implementing all
functions. By changing this one module, all dependent parts change too.
Modules are the most flexible way to share and combine functionality within
Ruby. The modules concepts can be used to flexibilize the implementation of
a DSL. Like explained, Domain Operations define methods which manipulate
the domain objects. If put inside Language Modules, these methods become
even more versatile and reusable. One usage is to design all operations in
modules, and to compose them in different variants. The other usage is to
use parts of one DSL and parts of another to facilitate language integration.
Also, a process-oriented advantage is visible: Independent language modules
can be implemented by different language engineers.

Language Modules can be used to provide a DSL within two scopes. In the
top-level scope, the DSL provides global available methods, so the main object
of the current Ruby process has to be extended. In the precise scope, any
module, class or instance object can implement the DSL. Applicability of
top-level scope or precise scope has to be determined by the application or
framework wishing to use the DSL.

Allowing arbitrary combinations requires some preplanning. To avoid in-
appropriate uses, precautions like the Abstract Methods pattern (prohibit
call of module which needs another module to work) or the Self-Contained
Setup pattern (initialize module-specific instance variables) have to be used.
These requirements could limit the Language Modules pattern, but more
experience is needed to state this precisely.

13



3. Internal Interpreter

Provide a global interpreter object which receives and evaluates DSL
expressions

1| Interpreter do
2 reconfigure_route "/twitter", :to_match => :TwitterAPI
3| end

The classical Interpreter pattern as explained in [15] [31] defines the grammar
and expression interpretation for any language with an interpreter object.
This object receives expressions and applies its interpretation in the scope
of the running program.

If a clean separation of different DSL is needed, or a well defined place where
DSL statements are executed, then the Internal Interpreter should be con-
sidered. The interpreter is a global object which receives a block of DSL
statements. Statements are executed to change some status of the appli-
cation, or to interpret and return values. We can say that the interpreter
is the representation of the DSL too. The easiest way to implement this
representation is to mix-in Language Modules into the interpreter.

The interpreter has no disadvantages - its qualities stems from the way how
it is implemented as a DSL representation, including the ability to combine
DSL expressions.

3.3 Language Purification Idioms
1. Keyword Arguments

Named parameters make understanding methods easy

1[fill_in "username", "sebastian", "Remember me on this computer" J
1| £i1ll_in "username", :with => "sebastian", :and_option => "Remember me on
this computer"

Methods called with more then one argument risk being misunderstood. In
the context of DSL, this hinders understanding what the language does enor-
mously. Using a literal hash as the parameter to the method call explicitly
states the meaning and content of arguments. This helps to resolve ambigu-
ity. Furthermore, if the keys form parts of a sentence which reads like natural
language, the readability of expressions is greatly improved.

On the downside overhead in parsing the arguments occurs, e.g. error catch-
ing. And sometimes the verbose nature of such method calls may not be
appropriate for the specific application.

14



2.

1| t

2| h

3| h.add (t)
4| ht

5| ht

1[htm1 (head(title "HTML DSL"))

U W N =

Block Scope

Provide a clear context for evaluating statements or stack hierarchical
information

= title "HTML DSL"
= head

= html
.add h

title "Markaby HTML DSL"
end
end

Ruby supports closures and anonymous blocks of code. They can be defined
using do. . .end notation. Specifying code in one place, which is to be called
in another, is a simple yet very powerful mechanism. Ruby DSL use this
mechanism for a number of reasons:

— Clear execution context Giving a statement an explicit place at which
it is called enhances readability of the expressions
— Seamless method extensions Using Ruby’s yield semantics, a method
providing an iteration can apply a given function (as a closure) and apply
it immediately
— Hierarchical information Express structured data with a layout using
blocks
This patterns introduction showed three examples. They are all using HTML
entities as Domain Operations. All examples show different ways to express
the hierarchy of the entities. Example three uses Block Scope - we see how
much simpler it is to understand the hierarchy expresses in this example.
Here is another example for the clear execution scope usage. Instead of calling
GPL.root, GPL.subfatures in succession, we put them inside a execution scope
to enhance the language expressiveness.

GPL.configure do

root

subfeatures :Weight, Directed

requires :GPL => "all :Weight, :Directed"
end

The disadvantage of Block Scope is the potential of code injection. What-
ever is handled to the method is evaluated within a process and certain user
rights. Attacker could exploit detailed knowledge of the application to read
its data, or perform file system operations. However, Ruby has a good sup-
port for safe levels, as well as tainted and trusted objects [36], which reduces
this threats’ potential.

15



3.

Method Chaining

Statements of chained methods to mirror complex grammar structures

1| £f1 = floor.new

2| pound (f1, 1)

1[pound_of_floor(1) J
1[1.pound.of "floor" J

4.

Complex object-oriented method calls for retrieving values of objects elimi-
nate language expressiveness. Providing underscored methods requires method
declarations for every possible combination. But chaining methods with the
minimal syntax of a point together is probably more readable by the domain
experts.

Method chains are implemented by taking every method of one object and re-
turn the object with Object#self to the caller. Immediately, another method
is called on this object, which returns itself, and so on.

On the downside, we need to redefine existing methods, or provide empty
methods which are just there for syntactical reasons. Methods could be de-
fined automatically via the Support idiom Method Missing. But Method
Chaining is not used often, and usually, Keyword Arguments and Block
Scope provides better alternatives, especially since they do not require changes
to existing methods.

Superscope

Use strings and symbols to transcend execution scope

1[configure :application, :with_server => :Thin J

1
2
3
4
5
6
7
8

def dynamic_feature_method (name)
method = <<-EOS
def #{name.to_s}(*xargs)
@features [name].execute
end
EOS
return method
end

From the global namespace, the current execution trace only knows specific
entities. Each method call, each variable, and each constant used in expres-
sions needs to be known in this execution scope. Since explicit dependencies
are created, modularization is impacted. One option is to use the classical
Proxy pattern, introduced by GAMMA ET AL. A proxy object determines
what object is to be called. This requires a manual mapping of the argu-
ments to a proxy and the called objects. But Ruby provides another way to
transcend execution scope.
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Ruby programs are treated as strings. As shown in [19], parts of a running
Ruby program can be translated to a string, modified, and evaluated back in
another execution scope. By using strings and symbols (which are nothing
more then immutable strings always pointing to the same place in memory)
code can be defined at one place and used in another.

The first example shows how to refer to a object not existing in the current
execution scope - with a symbol naming the entity. Ruby has a built-in
Proxy for global entities: The method Object.const_get. Whatever objects
the supplied symbol argument represents - it is returned to the caller. Note
that the namespace stack for submodules or subclasses has to be resolved
manually.

The second example defines a method which returns a string-based method
declaration. The returned method name is that of the given argument, and it
possesses a body which accesses the instance variable @features. Any object
can call this method, and use Kernel#eval to actually define this method as
an e.g. instance method.

In practice, Superscope allows to have a clean local scope and decouple the
application together with Proxy. Developers should however regard whether
objects of one scope should be able to address other objects at all. This could
hint at a questionable design needing improvement.

5. Parentheses Cleaning

FEliminate parentheses around method calls

1[fi11_in("textfie1d", Hash.new[:with, "This is a sample text"]) J

l[fill_in "textfield", :with => "This is a simple text" J

Parentheses around method calls reduce language expressiveness. They are
a necessity of most programming languages, but usually do not carry se-
mantic information. Ruby makes this very easy. In most cases, all method
related parentheses can be just dropped from expressions. The readability is
improved immediately. Only some ambiguous cases, like intermixing hashes
and blocks, fail.

Although this is a very easy to apply pattern, its impact is fundamental.
To the best of our knowledge, no other successful dynamic language allows
to skip method parentheses. This was one of the reasons why we started
researching Ruby-based DSL in the first point. The importance of changing
programming language expressions to a form which does not resemble a
programming language can not be stressed enough.

17



6.

2
3

!

7.

Boolean Language

Use natural language for logical operations

1tif response.success? && password.correct? && !token.rejected?

greet "Welcome User!"
end

greet "Welcome User!" if response.success? and password.corret? and not
token.rejected?

Boolean operators are common in programming languages. Conditions have
to be formed, entries validated, and more. Ruby provides the standard
boolean operators and, or, and not. Normally, the symbolic representations
are used. But they have natural language counterparts - the one we just
used.

Instead of using the symbols, we can switch to their natural language coun-
terparts. In most cases, this is safe. But in some cases, unexpected behavior
may occur. The reason: The keywords have a lower precedence then their
symbolic counterparts. In general, this is not a problem, since we assume
substantial tests for language expressions. So it seems the potential to im-
prove the language expressiveness outweighs the drawbacks.

Operator Redefinition

Redefine operators to suite the domain

- order (:date => Date.today)

l(ship order (: for_user => "sebastian") + order(:as_replacement_for => 345) J

CUR W N =

Any domain needs to relate its members to each other, compare them, sort
them, and select them out of a bigger set. Naturally, symbols for addition,
subtraction and so on come to mind. Many Ruby objects have these opera-
tions defined. For example, the Array class allows to add instances with a +, to
define the difference with -, and to perform a join as simple as [1,2,3] & [2]
#=> [2]. The secret is: These operations are methods, not language-internal
operators.
In Ruby, the basic operators are just normal methods. See » Table 1 for a
complete listing. This means, any domain object can define them. Here we
see a method declaration for + from this sections introduction example.

class Order
def + (other)
other
end
end

Using such symbols together with Parentheses Cleaning in expressions is a
good way to improve language expressiveness.
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Table 1: Redifinable operators in Ruby (from [13])

l Operator ‘ Operation ‘
! Boolean NOT
+ - Unary plus and minus (defined with -@ or +@)
+ - Addition (or concatenation), subtraction
ok Exponentiation
*/ % Multiplication, division, modulo
&1~ Bitwise AND, OR, XOR, and complement
<< >> Bitwise shift-left (or append), bitwise shift-right
<<= >= > Ordering
=====l=="I"<=> Equality, pattern matching, comparison

8. Custom Return Objects

Return multiple values with the simplest data store - a custom object

1| def test

2 return Array.new(true, body)
3| end

4

5| result = test

6| result [1] #=> body

1| def test

2 Struct.new(:success, :body)).new true, body
3| end

4

5| test.body #=> body

J

Out of the box, Ruby returns exactly one object. If the language designer
wishes for multiple return values, they need to be packaged in a collection,
e.g. array or hash. The problem is that internal knowledge of the data struc-
tures is required on any caller, which is e.g. difficult to refactor. From the
DSL perspective, accessing the second value of the returned array looks also
debatable.

The solution is to define custom return objects. Does this mean we need to
define inner classes in methods just to return them? No, the special Struct
object comes to the rescue. Calling Struct.new with a set of arguments defines
a default class object, with the arguments being instance variables and name
of setters and accessors at the same time. Used in an assignment, the struct
object is bound to the left-hand value. This object has a new method just
like for classes, and can be used in the same manner. So, the example above
defines a anonymous struct object which has two instance variables, success
and body, and same named accessors and setters.

This pattern has good potential for an alternative Method Chaining, which
limits required changes and at the same time binds objects and their return
values together. One drawback is that named struct objects pollute the sym-
bol tables, but usually a anonymous use, like above, is suitable.
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9. Aliasing

Change existing methods to have a more domain-specific name

1[alias_method :set_option_to_default, :make_defaults! J

From a historic perspective, many components of Ruby, such as core classes,
libraries and frameworks, have been developed in a time where the idea of
providing a custom language to access functionality did not had a hold in
the Ruby community. “Normal” object-oriented classes and its methods are
required to use the component. But what if we want to use a component
directly, or even provide a DSL for an existing application?

With the built-in Module#alias_method an immediate and simple change can
happen. The method receives two symbols as arguments. The first argument
is the name of the old method, and the second argument the new method
name. Calling the new method redirects to the old one. This provides more
domain-related method names, but neither behavior nor external call struc-
ture are open to modifications with this approach. Changing method inter-
nals is done e.g. via Ruby’s open classes concept, as explained detailed in
[19].

To rename existing methods, and to change their implementation, helps mod-
ifying existing applications to have a more domain oriented form.

10. Seamless Constructor

Create new objects for classes without using the new operator

1[Add.new(Lit.new(2), Neg.new (4))

I[Add(Lit 2, Neg 4)

The new operator expresses the intent to initialize a new instance of any
class. A new object is created and bound to a receiving variable or the
current execution scope. Some DSL may need new objects, but don’t want
to call the new operator at all. Since Ruby constants are open to redefinition
at runtime, we can overwrite the original constant, while keeping the original
alive within the body of the redefinition.

The following example shows how to define a seamless constructor.

2 Add .new(lvalue, rvalue)

1| def Add(lvalue, rvlaue)
3| end

From there on, just calling Add with appropriate two arguments creates a new
object. This pattern looks nice on the surface, but can have defects internally.
Other objects won’t be able to query the original object. We could define
another constant pointing to the original, but we would need this modified
constant in other places too. This complicates application understanding
unnecessarily.
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3.4 Support Idioms
1. Prime Activation

Ezecute code only when the file is executed by the interpreter

1| if $0 == __FILE__
2 load_first :dsl_interpreter

3| end

Ruby libraries may contain files which need some sort of setup to work
properly. If one uses them directly, certain setting may yet have not been
defined. Prime Activation solves this challenge by adding a block of code to
the file which is only executed of the file is directly executed.

In the context of DSL engineering, we may use this if our Ruby program is
composed of different DSL. Enabling to use them separately requires loading
the appropriate DSL definition first. The example above e.g. loads a Inter-
nal Interpreter first. However, using the pattern is to question as better and
more object-oriented mechanisms for enabling reusability exist, like the fol-
lowing Self Contained Setup.

2. Self-Contained Setup

Included Modules define required variables automatically

1| module Message

2 def self.setup

3 "@message = \"Started\""
4 end

5

6 module ClassMethods

7 puts "Executed"

8 def message

9 @message

10 end

11 end

12

13 def self.included(base)

14 base.extend ClassMethods
15 base.send :eval, Test.setup
16 end

17| end

18

19| class Dispatacher

20 include Message

21| end

Rubys’ modules are the primary way of sharing functionality. One challenge
is to design modules which extend objects functionality, but rely on local
variables. Any potential object needs to define these variables upfront. This
is too much coupling between independent entities.

The proposed solution uses the Module#included hook. This method is called
on the module, and receives the object it is included into as an argument.
The module itself has a setup method which returns any code to be executed
on the object. This code could be requiring other modules or classes, define
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variables, or methods, and much more. In the example, we use a string and
Kernel#eval to define the local emessage variable. In total, this pattern allows
to seamlessly compose different modules and their functions into one object
without coupling the two too much.

3. Abstract Method

Protect methods against inappropriate usage by raising a default error

1| def abstract_method

2 raise AbstractMethodError, "Please Provide an implementation for
>abstract_method’"

3| end

Abstract methods are a mechanism to define an interface to an object or
module. When a method is called on an object providing this interface, the
method needs to be overridden, or else raises an error. Languages such as
Java have a direct statement modified for defining those methods, but Ruby
has not. But the mechanism is easy to implement.

The solution is to provide a default method body for those methods which
are to be abstract. This body simple raises an error when called. Any ob-
ject gaining this method, e.g. subclassing or as an included module, has to
redefine the method. While this mechanism works, it does not reflect what
it does using appropriate keywords. But we could provide a method which
is used like this:

2 abstract :log, :event

1| class LoggerAPI
3| end

4. Method Missing

Define missing methods on the fly

1| module DSL

2 def method_missing(sym , *args , &block)
3 case sym

4 when :app

5 (class << self; self; end).class_eval do
6 define_method sym do

e block.call

8 end

9 end

10 else

11 super ( sym , * args , &block)

12 end

13 end

14| end

Method Missing is a very prominent pattern in the Ruby community. It
is used e.g. in ActiveRecord®, Rails database DSL. Calling a method like
find_by_name_and_familiyname triggers the dynamic finder mechanism which

8 http://ar.rubyonrails.org/
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looks whether the queried attributes exists and if yes, return the value with
an internal method call.

Another use case is to define the method that was missing on the fly. Consider
the case of calling a method with a supplied block. When the method is not
available, it should be defined and when called, it should execute the supplied
block. The above example enables this. The method method_missing receives
a symbol specifying the called method, an array of its arguments, and the
supplied block. Inside, we compare the symbol, and if it is :app, then we
define the method with a body which calls the supplied block.

However, with great power comes great responsibility. method_missing should
be used with caution and only in the namespace of a framework or a DSL. If
multiple frameworks would overwrite the method_missing method in Kernel,
this pattern quickly becomes the antipattern Monkey Patching - incompat-
ible redefinitions lead to erroneous code.

3.5 Summary

Engineering Domain-Specific Languages requires working on three abstraction
levels. Language Modeling is the task to provide a executable form of the do-
main as objects which implement operation. Language Integration considers how
a DSL can be integrated with other frameworks or other languages. And finally,
in order to have a high language expressiveness and thus foster the DSL suc-
cess, Language Purification helps to eliminate domain-foreign tokens. For each
abstraction level, several patterns were presented. Each pattern was described
with an example, its usage, and potential disadvantages. Some patterns already
named alternatives or corresponding patterns, but the majority requires more
usage and development experiences. The current catalog will evolve and grow
with future research. We continue with two examples for DSL engineering using
the suggested process and patterns.

4 Examples

In the past, we developed two DSL. The first DSL targets the domain of Soft-
ware Product Lines. It configures an abstract feature model by describing the
relationships and constraints features have to each other. The second DSL tar-
gets the domain of feature-oriented programming. By making features entities
of the host language, we bring a whole software development paradigm to Ruby.
Originally, both DSL were developed with a loosely related sequence of slightly
modified steps. But in retrospection we found no difficulties in aligning past
steps with the current language engineering process’ form. Thus, we want to use
existent examples as a validation for the process, and accompany the process’
evolution with further case studies of DSL engineering.

In the following, both DSL are explained with enough background material
to understand their domains and expressions, and then we focus on the process
and patterns.
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4.1 Software Product Line Configuration Language

4.1.1 Explaining the DSL

The Software Product Line Configuration Language (SPLCL) was our first at-
tempt at creating a Domain-Specific Language. Software Product Lines address
the important challenge to structure valuable production assets in a meaningful
way to support productivity and reusability [11]. Withey implies the important
strategic value of such assets, and he further defines product lines as a ”group
of sharing a common, managed set of features” [38]. We explain the language
following the Graph Product Line example [28], which is depicted as a feature
tree in »Figure 2.

‘Weight

| Directed |

Undirected

| Weighted | | Unweighted |

Algorithms

ST Shortest

Connected Strongly Connected
Number |c p | c | Cycle Kruskal Path
Mandatory Optional More And Or

feature feature  relation relation relation

Fig. 2: Feature tree of the Graph Product Line

SPLCL provides modeling capabilities for a complete feature tree. A feature
tree is considered to have features of type root, node and leaf. Each feature
defines subfeature relationships. Constraints use the keywords all, any, one, more
and is to relate their selection in the tree with the existence or choice from other
features.

In the following, we see the definition of the root feature, and explain the
meaning of individual statements.

24



==
= O OO UUE W
( 1

==

D UL W N =

= O OO Ulk W -

gpl_feature
name :GPL
root
subfeatures :Type, :Weight,
requires :GPL => "all :Type,
end

Feature.configure do

:Search,
:Weight,

:Algorithms
:Search, :Algorithms"

Line 1 defines an object gpl_feature

On line 1, Feature.configure is the class constructor for features

The keywords begin and end on line 1 and 5 define an anonymous block of
code that is executed in the context of the receiver

The feature is named GPL on line 2

This feature is given the roottype on line 3

Its subfeatures are Type, Weight, Search, and Algorithms (line 4)

requires defines that if the GPL feature is included, then all the features
Type, Weight, Search, and Algorithms must be included as well (line 5)

Once all features are created, the next step is to configure the ProductLine.

spl ProductLine.configure do
description "The complete GraphPL"
add_feature gpl_feature

end

add_feature
add_feature
add_feature
add_feature
add_feature
add_feature

spl.
spl.
spl.
spl.
spl.
spl.

type_feature
weight_feature
search_feature
algorithms_feature
directed_feature
undirected_feature

J

It receives a description and adds features with the add_feature method.
The product line has built-in logic for checking if only one root exists, if all
named features in the subfeatures relationships are included, if all features are
connected to each other and if their type corresponds to their position.

The final step is to create a ProductVariant.

pv_cycle_numbers ProductVariant.configure(spl) do
description "Basic variant with algorithms Cycle and Numbers only"

end

:GPL
:Type

pv_cycle_numbers.
pv_cycle_numbers.

activate_feature
activate_feature

pv_cycle_numbers.
pv_cycle_numbers.
pv_cycle_numbers.
pv_cycle_numbers.
pv_cycle_numbers.

activate_feature
activate_feature
activate_feature
activate_feature
activate_feature

:Weight
:Search
:Algorithms
:Cycle
:Numbers

This object receives a ProductLine object with its constructor. Only if the

ProductLine is valid, a new ProductVariant object is created, otherwise an error
occurs. Furthermore, a description can be added. The variant is configured
with activate_feature and deactivate_feature. The current configuration can
be checked with the valid? method.
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4.1.2 Language Engineering

Considering the process, we made the following steps.

— Domain Design Three entities are important for the SPLCL: The single
feature, the product line as a hierarchical structure of features, and the prod-
uct variant as a selection of any feature from a product line. Features are
modeled in a tree structure, so that both feature hierarchies and feature
constraints can be expressed. Constraints are in the form ”if A, then B” or
”if A, than all B, C and D”. Following, the product line is simply the set
of all features, forming a tree representation. The product line is valid if all
its features are reachable from each other and if all features are complete.
Finally, the product variant is an instance of the product line. It activates
certain features and provides a configuration of the product line. The con-
straints for all activated features must yield true, or else the whole variant
is invalid.

— Language Design We need a representation of all entities. The feature
receives a name, description, a position of either root, node, or leaf, a set of
subfeatures, and any number of constraints. The ProductLine would also
get a description, and could use add_feature or remove_feature. Also, the
product line needs a method to check whether it is valid or not. Finally,
ProductVariant needs to receive an existing product line and a description.
Users can activate and deactivate individual features.

— Language Implementation Since this language was the very first DSL we
implemented, the first iterations merely tested what kind of syntax Ruby
offers for making configuration as easy as possible. The most important
design goal was to have a minimal syntax - it should contain only symbols
of the domain, but nothing which resembles a programming language. After
some time, we used Block Scope and Parentheses Cleaning. This satisfied
our syntactical goals. A challenge was to reference features inside a product
line without using the constant with which the feature was created first.
Here, Superscope helped us in decoupling the application. Once the basics
were clear, we used extensive RSpec tests for testing each possible variant
of the graph product line, e.g. as this one:

1| it ’ * define the basic variant to include a product line description’ do
2 pv_cn = ProductVariant.configure(spl) do

3 description "Basic variant with algorithms Cycle and Numbers only"

4 end

5 pv_cn.activate :GPL, :Type, :Weight, :Search, :Algorithms

6

7 pv_cn.get_all_features.should have(5).item

8 pv_cn.get_all_features.should include :Search

9 pv_cn.get_all_features.should include :Algorithms

10| end

In terms of the pattern language, SPLCL has the following form:

— Language Modelling Domain Object, Domain Operations
— Language Purification Block Scope, Parentheses Cleaning, Superscope
— Language Integration Hooks

26




4.2 rbFeatures

4.2.1 Explaining the DSL

One important challenge of software development is to separate its many di-
mensions, like requirements, functionality, and technologies, in a way so that the
resulting application is still maintainable and extensible. One answer to this chal-
lenge is feature-oriented Programming (FOP) [32]. Features, seen as advances
in functionality [22], modularize the software along one additional dimension.
Instead of being limited to the languages modules or classes, features provide
another layer to modularize functionality.

rbFeatures is our contribution to FOP. It is a DSL which brings features
as “types” to Ruby. rbFeatures has been extensively covered in [20], and its
metaprogramming foundation can be studied in [19]. However, for being concise,
we introduce the most important facts about rbFeatures here.

The first step to use rbFeatures is to define features of the program. Any
class object becomes a feature by simply including the feature module. With
this, the class gets methods to activate and to deactivate itself, to query its
activation status, and many private methods for the internal logic of rbFea-
tures. Once all features have been defined, the next step is to form so-called
feature containments. Inside a program, particular pieces of source code - whole
methods or single lines - belong to certain features. These parts are put inside
containments: A normal Ruby block together with a containment condition. The
containment condition contains a test for at least one features’ activation status.
Only if the condition yields true, e.g. when the features are activated, then the
code gets executed. Conditions like e.g.“if feature A and feature B are active,
but not feature C” map to A + B - C.

After the second step, the program is said to have been feature refactored.
The program is now ready for forming any variant as an expression of a partic-
ular set of activated and deactivated features. Variants are built either at the
initialization of the application, or dynamically at runtime. Activating or deac-
tivating features re-evaluates parts of the source code, thus leading to changed
methods, added fields etc. In total, the amount of changes to a working applica-
tion is minimal: defining features and expressing parts of the program in feature
containments. That is all whats needed to enable Feature-Oriented Programming
in Ruby. Lets take a look at an example.
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class Print
is Feature
end

class Eval
is Feature
end

class Lit
def initialize(val)
@value = val
end

Print.code do
def print
puts @value
end
end

Eval.code do
def eval
@value
end
end

def print_eval
Print.code { "print #{@value.to_s}|" } + Eval.code { "eval #{@valuel}" }
end
end

Here we see that two features are implemented: Print and Eval. In the class
Lit, we see three methods. The first two, print and eval, are included in feature
containments. The methods are only defined if the corresponding containment
condition - in this case a simple test if either Feature Print or Eval is activated
- is true. Another method, print_eval, is implemented by default, but returns
different values according to the features activation status.

4.2.2 Language Engineering

rbFeatures was developed following these steps.

— Domain Design Other FOP solutions express features not as first-class
entities of the language, but with various external mechanisms [34] [35].
Since a gap between representation and implementation exists, we wanted
represent features as entities of the language. So, a feature would be an
object inside our language, which could be activated and deactivated, and
express what code in the program belongs to this feature.

— Language Design The top entity is the Feature itself. It uses methods to
activate and deactivate it. Code belonging to a feature is expressed as a
code block, which is handled to the code method. The second entity is the
FeatureResolver. Its only external visible methods are init which receives
the code of the application, and reset! to set all features to the deactivated
status again.

— Language Implementation We used an extensive RSpec test suite for
many dimensions of rbFeatures. Starting point were containments which
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included method declaration to test whether they defined methods correctly.
We than became aware of checking that methods were defined only in the
scope they are supposed to be defined, and not to let a instance method
become a class method. Next we added a test suite to ensure the preservation
of method type and visibility, and so on. The most recent tests are for the
containment condition. Consider the following test which checks whether the
expression A | (B & C) - D behaves correctly.

it " * Complex mix with And [Add | (Sub & Div) - Tim]" do
Add.activate
Sub.activate
Div.activate
Tim.deactivate
((Add | (Sub & Div)) - Tim).code{truel}.should be_true
end

O UL W N

During implementation to conform to the tests, we applied several patterns.
Blocks which surround those parts of the program which belong to a feature
is the dominant syntactical form (Block Scope). Every class should become
a feature. To express the domain, we aliased the include method to a is, so
that we can express what classes are features with the is Feature expression
(Aliasing). We began with a complete module, but later factored out different
modules with rbFeatures specific code (Language Modules). In order to use
natural symbols like +, -, |, and &, we created a separate module (Operator
Redefinition).

In terms of our pattern language, rbFeatures is expressed as follows.

— Language Modeling Domain Objects, Domain Operations

— Language Purification Block Scope, Aliasing, Operator Redefinition, Paren-
theses Cleaning

— Language Integration Hooks, Language Modules

5 Discussion

In order to complete the understanding and utilization of the process, we dis-
cuss how to integrate DSL engineering with the general software development
process. The next point is to form a better understanding where language engi-
neering patterns relate to other forms of patterns. We continue with suggesting
a enhancement of the current process, and discuss as the last point how the
research results of this report can be extended to be used with other dynamic
programming languages.

5.1 Integrating DSL Engineering and Software Development
Processes

In our experience, DSL allow another kind of solving software development chal-
lenges. By raising the abstraction layer and letting developers work with a lan-
guage that expresses the domain, software reuse is boosted [30] and with it
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overall productivity. In our view, a DSL is a tool in solving complex engineering
problems. From a viewpoint of solving problems with the right tool, DSL engi-
neering may also be considered as a paradigm. COPLIEN gives many more ideas
how to use multi-paradigm design for application development effectively [8].

But in order to use DSL effectively, some considerations have to be made.
The first consideration is how the development process for DSL and for software
is related. The answer is straightforward: Both processes follow the universal
steps of analysis, design and implementation [16]. In the course of analyzing the
requirements of a particular program, it may be discovered that a number of
domains have to be considered in the application. A DSL helps in representing
the domain inside the program. If the domain is likely to occur in other programs,
or already has occurred, then the design of a DSL can be taken into consideration.
The software development would go on normally - with the exception that one
of its working packages is the design and implementation of the DSL.

The second consideration is how to deploy the DSL engineering process con-
cretely. To the beginning of our process, we stated the open form principle: each
process step takes a specific form dependent on the domain, technology, language
and development goals. It is open to the DSL engineers what concrete methods
and mechanisms to use for representing the domain model, record language ex-
pressions, design the language and its status, and documentation. In our view,
the methods for designing the overall application should be reused for the DSL -
after all, the DSL is software too. Reusing known and working methods improve
developers acceptance to engineer DSL and the success rate of doing it.

Additionally to the form, the process’ nature is also important. We presented
an agile process. The fundamental distinction to other processes, like the water-
fall model, is that instead of having large upfront analysis phases, each iteration
only analyzes the most important parts of the domain, and implements them.
After each iteration, working software exists, which can be modified to meet the
succinctly refined requirements of its stakeholder. But what if a DSL should be
designed in a software process with a waterfall model? The process remains us-
able with this setup too. The only restriction is that developers have the whole
knowledge about the domain and the language engineering patterns in advance.

The last consideration is how to use DSL in application engineering. In our
view, using a DSL in isolation only raises the abstraction level for one domain of
the application, but the rest of the application stays at its current level. While
this has advantages, we have a very specific view how to maximize DSL usage.
In [18], we suggested designing applications using multiple DSL and one base
language only. We term this Multi-DSL Applications. We argue that when we
abstract all domains, technologies, and foreign languages with carefully crafted
DSL, we can use the same concept in all different layers of the application.
This simplifies specifying, implementing, testing and maintaining the application
tremendously. We already worked on this kind of applications, and will provide
further explanations in the future.
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5.2 Structural Relationships of Patterns
5.2.1 Types of Patterns

General literature on patterns distinguishes abstraction level or responsibilities
of patterns in software. This section will explain some viewpoints, and then relate
the language engineering patterns to them.

The first distinction is the one proposed by BUSCHMANN ET AL. [4]. He
termed three abstraction levels for patterns: Architecture Patterns, Design Pat-
terns and Idioms. In the original meaning, Architecture Patterns structure the
application into subsystems with well-defined responsibilities. At the second
level, Design Patterns detail the subsystems inner-structure with components,
and defines the interaction of subsystems and the components. Idioms are language-
specific solutions to build the components.

Next, we discuss the patterns Creational, Structural and Behavioral as sug-
gested by GAMMA ET AL. [15]. These patterns distinguish the kind of problems
which occurs in object-oriented programs. Creational patterns suggest strategies
to create objects in a decoupled way. Structural patterns elaborate mechanisms
to separate responsibilities between objects, and behavioral patterns how the
objects collaborate with each other.

The third distinction we want to make is the separation of layers inside an
application. FOWLER sees three layers for his patterns [14]. Domain patterns
express the logic of the domain, like validation of its entities, and how these
entities are structured to each other. Data Source patterns describe how to link
domain entities with databases so that entities are saved and retrieved according
to the conditions defined by the domain logic. Finally, interaction is driven by
the Presentation patterns - the patterns herein explain how to route requests
down to the data source and ensure everything is happening according to the do-
main logic. FOWLER provides additional patterns for Object-Relational Metadata
Mapping, Offtine Concurrency and Session State to solve layer-specific problems.

When we reflect upon the patterns and the abstraction level they are target-
ing, we see that BUSCHMANN ET AL. provided vertical patterns, distinguishing
abstraction viewpoints on creating whole applications. None of the patterns are
idioms, but still they target different abstraction levels. We see Creational and
Behavioral patterns, suggested by BUSCHMANN ET AL., on the Design level only,
while the Structural patterns can be used in both the Application and Design
level. Patterns suggested by FOWLER are on the Design level only. These rela-
tionships are shown in »Figure 3.

5.2.2 Patterns and Language Engineering Patterns

How are the explained pattern and language engineering patterns fitting to-
gether? To answer this question, we must see what general place a DSL takes in
the application architecture. We consider the design of a web application. The
basic layout is the Model-View-Controller pattern. This patterns’ workflow is
that the controller receives a request, interacts with the model to retrieve some
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Creational Design Data Source
Behavioral Presentation
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Fig. 3: Pattern relationships

data, and then renders a view. Model-View-Controller has three components.
For its model and its view we want to use a DSL, which is depicted in »Figure
4.

| !
Controller

Fig. 4: Model-View-Controller pattern augmented by a DSL

We further elaborate the application, and after some iterations of language
engineering for the model, we have a preference for using both Language Modules
and Interpreter for the Language Integration, and several Language Purification
idioms. A graphical representation of the pattern language used to describe the
pattern is shown in »Figure 5.

Once we have this representation, we want to express that the component
is realized by the DSL. Therefore, we replace the DSL component with the
elaborated pattern language, and use Language Modules and Interpreter as the
interface to the DSL which is used by the model component. This is shown in
» Figure 6.

Generalizing from this example, we see that a DSL can abstract any compo-
nent of an application. GREENFIELD ET AL. expresses that a pattern language
is an incubator for a DSL [17]. Once the patterns abstraction becomes accepted
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Fig. 6: Realizing the model component with a DSL

by the community, they will be realized within the language. In our case, this
realization has the form of a DSL. But can a DSL also implement a whole pat-

tern?
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Lets analyze the Sinatra web framework. On top of Rack?, an interface to web
frameworks, Sinatra defines a simple DSL. For example, get /items defines the
“/items” URL. When a HTTP-GET request is send to this URL, the correspond-
ing method body is called. This is the controller part of a Model-View-Controller
pattern, and using views and models in Sinatra is very straightforward too. So,
does Sinatra implement a DSL for the total Model-View-Controller pattern? We
think no, because only the controller part of is realized. But an instance of the
Sinatra is an instance of the Model-View-Controller pattern.

This answers the first part of our question how patterns and language engi-
neering patterns fit together. In addition to the role of a DSL as an implementa-
tion of components from patterns, and as a possible instance of pattern too, we
can also relate the abstraction levels of the patterns proposed by BUSCHMANN
ET AL. and the language engineering patterns: Language Integration provides the
framework, the interface to interaction with other programs and languages, Lan-
guage Modeling the design and overall appearance of the language, and Language
Purification plus Support as the idioms of providing high language expressive-
ness and implementation-details of the DSL. These relationship are shown in
»Figure 7.

Application Language Integration
Design Language Modelling

Language Purification

Support

Fig. 7: Abstraction levels of the language engineering patterns

5.3 Feature-Oriented DSL Engineering

Our FOP-DSL rbFeatures [34] [35] can be used to further augment the DSL en-
gineering process. At first we talk about designing a DSL to be feature-enabled
right from the start. From the list of process steps, Language Design and Lan-
guage Implementation are affected. During design phase, one additional artifact
needs to be created: The feature model. This model names all features, shows
their relationships and constraints. During Language Implementation, we can
use the feature model to determine iteration goals. Furthermore, we use feature-
containments immediate while programming. This will possibly provide better

9 http://rack.rubyforge.org/
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tests right from the start. In the other case, the DSL already exists, but needs
feature-refactoring. The first step is similar - we need a feature model. We then
start small iterations which change part of the code and its according tests, and
enable features step by step.

But what could govern the decision to have a DSL feature-enabled? We
can think of two use-cases. The first case is to provide different variants of the
DSL. For example if the DSL is complex because it solves a complex domain.
If the features target the Domain Objects and Domain Operations, we can cus-
tomize the DSL to only contain a small subset. This can improve using the
DSL. The other use case considers more language-internal qualities. Imagine a
DSL for transaction control used within a web application. For performance rea-
sons, certain checks are disabled if the frequency of requests exceeds a certain
threshold. Having a feature-enabled DSL, we now deactivate this feature, and all
currently running and following processes disable the checks. Requests are now
processed with the same speed, and once the frequency lowers again, the checks
are re-activated. This dynamic-runtime activation would only require an exter-
nal trigger measuring the frequency, and this would call the feature-related code.
As the research continues we can possibly provide more use-cases for dynamic
DSL-adaptability in Multi-DSL Applications.

5.4 Language Independence

We suggested a process for engineering internal DSL in a dynamic programming
language. At the heart are agile practices with behavior-driven development and
patterns. None of these parts is language specific per se, but we choose Ruby
as our implementation language. We suggested patterns derived form our work
with Ruby. But to what extent can this pattern be generalized to work with
other dynamic programming languages?

The work of DINKELAKER AND MEZINI [12] explains the design of an aspect
language for supporting Aspect-Oriented Programming [24]. They use Ruby as
the working language, but suggest their results are generalizable to other lan-
guages, as long as these languages support four properties: (1) object-oriented
constructs, (2) closures, (3) metaprogramming capabilities, and (4) a flexible,
non-intrusive syntax. Most important dynamic programming languages support
these characteristics, but to a different degree. Especially the required metapro-
gramming capabilities may differ, and the amount of syntactical freedom for
forming expressions.

This leads us to the generalization of the suggested patterns. Language Mod-
eling patterns depended on object-oriented mechanism, and can thus be reused
completely. Also, the Language Integration patterns are presented in a general
form. Details, such as the available Hooks in other languages, may differ, but in
general the same ideas can be applied. While these patterns have a good chance
of being reused with other dynamic programming languages, the Support and
the Language Purification idioms are most likely to fail: Because they use Ruby
internals respective work directly on the Ruby syntax, they are hard to apply in
other languages.
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We conclude that the process can be reused. Engineering DSL with the three
phases Domain Design, Language Design and Language Implementation, and us-
ing agile development practices including behavior-driven development, is trans-
ferable to other languages. Patterns for integrating the DSL into other appli-
cations and languages, and for transforming the domain model to a language
model, are also usable in other languages. The idioms for Language Purification
and Support instead require more work. We think that some of them are usable
in other languages too, but this needs to be analyzed. Also, yet undiscovered id-
ioms may reside with other languages and could be added to the pool of patterns
and idioms for language engineering.

6 Summary and Future Work

This report proposed a novel engineering process for internal Domain-Specific
Languages. By building upon an existing language infrastructure and using an
agile process with language statements as the specification, custom DSL can be
developed quick and efficient. The paper showed in detail how the agile process
works: (1) Collect domain statements and define the domain model, (2) design
language syntax, and (3) iterate with language expressions as test specifications.
The second part of the report presented patterns for implementing DSL. Pat-
terns play an important role, both because they boost productivity by applying
proved solutions to similar problems, and because they ensure further language
properties. We distinguished into patterns for Language Modeling and Language
Integration, and idioms for Language Purification and Support. T'wenty patterns
emerged as the result of prior empirical work and the analysis of other existing
DSL. In the discussion, we explained how general known software development
patterns relate to our language engineering patterns, how to support developing
DSL with features, and how our findings can be generalized and used with other
dynamic programming languages for language engineering.

The current results must be evaluated with future work. We plan on using
the process to build an internal DSL for software configuration management,
authorization management, and to further evolve our rbFeatures DSL. At the
next stage, we will also research how to use multiple DSL in developing medium-
sized web applications. We believe that using multiple existing DSL alongside
self-engineered ones greatly improve the development productivity.
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