Nr.: FIN-017-2009

Representing and Composing First-class Features with
Featured

Sagar Sunkle, Sebastian Giinther, Gunter Saake

Database Research Group

Fakultat fur Informatik
Otto-von-Guericke-Universitat Magdeburg

Nr.: FIN-017-2009

Representing and Composing First-class Features with
FeaturedJ

Sagar Sunkle, Sebastian Glinther, Gunter Saake

Database Research Group

Technical report (Internet)

Elektronische Zeitschriftenreihe

der Fakultat fur Informatik

der Otto-von-Guericke-Universitdt Magdeburg
ISSN 1869-5078

Fakultat fiur Informatik
Otto-von-Guericke-Universitat Magdeburg

Impressum (§ 5 TMG)

Herausgeber:
Otto-von-Guericke-Universitat Magdeburg
Fakultat fir Informatik

Der Dekan

Verantwortlich fiir diese Ausgabe:
Otto-von-Guericke-Universitdt Magdeburg
Fakultat fur Informatik

Sagar Sunkle

Postfach 4120

39016 Maadeburg

E-Mail: sagar.sunkle@iti.cs.uni-magdeburg.de

http://www.cs.uni-magdeburg.de/Technical_reports.html

Technical report (Internet)
ISSN 1869-5078

Redaktionsschluss: 27.11.2009
Bezug: Otto-von-Guericke-Universitat Magdeburg

Fakultat fur Informatik
Dekanat

Representing and Composing First-class
Features with FeatureldJ

Sagar Sunkle, Sebastian Giinther, and Gunter Saake

School of Computer Science, University of Magdeburg,
39106 Magdeburg, Germany
sagar.sunkle, sebastian.guenther,
gunter.saake@iti.cs.uni-magdeburg.de

Abstract. Software product lines (SPLs) enable creating product fam-
ilies, set of products that differ in terms of features. Traditionally, tech-
niques for implementing features have sided with one of the two views
of features: as distinguishable characteristics or as increments/changes
in program functionality of the software under consideration. We argue
that in order to realize the full potential of features as a separation of
concerns mechanism or a modularity mechanism in its own right, both
of these views must be supported by the representation of features. Fur-
thermore, the composition of such uniformly represented features should
be streamlined so that both can evolve together. Towards this end, we
present FeatureJ, an implementation technique that integrates features,
variants, and product lines as first-class entities, namely types, in the
Java programming language. We review the trends in the representation
and composition of features in the current implementation techniques
and arrive at a set of requirements to represent features as first-class en-
tities. We demonstrate the syntax of FeatureJ and explain its compiler
architecture with a running example of a product line. We compare our
implementation approach with other approaches in terms of the repre-
sentation and composition of features and state the advantages that our
approach brings to the implementation of SPLs.

1 Introduction

Features are the main reuse mechanism of Software Product Lines (SPLs). SPLs
represent a software engineering paradigm that enables creating a set of prod-
ucts, called product families, based on the common and the variable features.
Feature-oriented software development (FOSD) is a general term applied to tech-
niques (henceforth called feature approaches) used to synthesize products of a
product family [1]. Since the introduction of the approaches such as feature-
oriented programming, there has been a proliferation of techniques that attempt
to implement features [6,7,16,29,31,33,36]. As the concepts related to software
product lines evolve, many of these technique prove inadequate 1) to provide ba-
sic representation of features that capture the new requirements of representing
the evolving SPL concepts and 2) to provide new mechanisms of composition
that effectively leverage such representations [40].

In our position paper [40], we put forward a representation of features that
would address various problems related to features such as forced hierarchical re-
finements, limitation of ordered composition, inexpressiveness of program deltas,
type support for features, and dynamic composition of features. We showed how
the new representation can be used to alleviate these problems. After present-
ing our ideas regarding a new representation for features in [40], we set out to
implement them in a software called FeatureJ, an extension of Java. We have
implemented a number of small case studies in FeatureJ such as the Graph Prod-
uct Line (GPL), the Notepad Product Line (NPL), and the Expression Product
Line (EPL)!. We have also implemented many examples indicating various other
capabilities of FeatureJ such as implementing multiple product lines and mul-
tiple variants. Currently we are exploring ways to extends FeatureJ in terms
of both the representation and composition capabilities of features. We intend
to implement larger case studies such as refactoring large open-source software
like OpenJDK? to a feature-based version to investigate the composition of lan-
guage features, previously refactored Berkeley DB? to make comparative anal-
ysis of FeatureJ’s capabilities with other approaches in which Berkeley DB has
been implemented?, and other applications such as Google Web Toolkit® which
allows developers to create Javascript front-end applications in Java, to study
cross-language application of features, etc.

In this paper, we take a review of how features are represented in Featurel
and how it composes the features thus represented. We begin by describing what
features are and how we distinguish them based on whether the features being
referred to are the features at the analysis level, or they are the actual features
being implemented. We specify why the themes of feature representation and
feature composition are important themes which must be studied in concert. We

! http://firstclassfeatures.org/index.php?n=Examples.FeatureJ
2 http://openjdk.java.net/

3 http://www.oracle.com/database/berkeley-db/je/index.html
* http://wwwiti.cs.uni-magdeburg.de/iti_db/research/cide/

® http://code.google.com/webtoolkit/

review the trends in the representation of features in various existing feature ap-
proaches, followed by how the features are composed in each of those approaches.
Based on this analysis, we obtain a set of requirements which we translate into
design choices for implementing FeatureJ. We explain the syntax and semantics
of typed representation of features in FeatureJ by means of a running example
of the EPL. We elaborate on the FeatureJ compiler architecture that enables
the new representation of features envisioned in [40]. We describe how features
are represented as types and how the typed features are composed as an integral
part of compilation process in FeatureJ. We discuss how FeatureJ differs from
the other feature approaches based on the categories of feature representation
and composition explained earlier and state the advantages of FeatureJ. We con-
clude this paper with the discussion of further extensions possible with respect
to the representation and the composition of features in Featurel.

2 What are features?

A feature of a software system represents a particular functionality provided by
that system. FOSD uses features to denote the requirements of a stakeholder. A
specific software product is created by selecting certain features from an avail-
able set of features. In FOSD, features are modeled using the feature diagrams
which graphically show the relationships between the features [11,25]. We first
take review of feature diagrams and elaborate on the general theme of features
introducing a couple of terms that distinguish between kinds of features.

2.1 Feature Models

SPLs are modeled using the feature diagrams. We explain feature diagrams using
the NPLS as shown in Figure 1. The NPL is based on the idea that the variants
of a notepad application can be obtained by selecting specific features such as
the creating, editing, and formatting options. The NPL itself is the root feature.
The NPL has four top level features: three mandatory features - File, Edit, and
Format, and one optional feature - Help. These features have the and relation,
which means that all of them can be selected together in a variant, except the
feature Help which is optional. The NewDocument and the Open features have
the or relation, which means that whenever a variant of the NPL contains the
Create feature, it must also contain one or more of the features NewDocument
and Open. The FontColor and the BGColor features of the feature Color have
the alternative relation which means that when the feature Color is selected in
a variant of the NPL, then either of the FontColor or BGColor features must be
selected but not both.

There are two inclusion constraint in this feature diagram, showing arcs from
the features Paste and FontColor to the features ClipBoard and Color respec-
tively. This means that whenever the feature Paste is selected so must the feature

5 http://firstclassfeatures.org/index.php?n=FeatureJ.Notepad PL

N

’ FontColor ’ BGColor ‘

NewDocument

(o]

Fig. 1: Feature Model of the Notepad Product Line

ClipBoard, and whenever the feature FontColor is selected so must the feature
Color. A notepad product variant is obtained by making selection of features
starting with all the top level features and further down the feature diagram
by following the feature relations for each parent feature. Based on the various
relations and the constraint, a valid notepad product variant could be the set
of features {File,Edit, Format, Help, Create, NewDocument, ClipBoard, Cut,
Copy, Font, Color, BGColor}.

2.2 Conceptual and Concrete Features

In the rest of the paper, we differentiate between the features as 1) the conceptual
features - the features in feature model / features in the analysis and design
stages of the FOSD and 2) the concrete features - the implemented features
(the nature of which differs based on the feature approach) / code fragments
constituting conceptual features to be used in software product configuration
and generation [21]. While the conceptual features are more or less uniformly
represented or reasoned about [8,14,16,19], the representations of the concrete
features are as plenty as there are feature approaches. This kind of distinction is
necessary because as features at the analysis and conceptual levels, the features
in the feature models merely denote functionalities and relationships between
them, but have no special semantics attached to them [30]. On the contrary
every feature approach attaches semantic meaning (to a varying degree based on
the representation of features in it) to code fragments that constitute a concrete
feature. Henceforth, we talk about features in models as the conceptual features
and implemented features as the concrete features.

3 Feature Representation and Composition

A feature is an end-user-visible, distinguishable characteristic of a system that
is relevant to a stakeholder of the system [11]. A feature is also defined to be an

increment in functionality [7]. In [40], we related the weaknesses in various feature
approaches enlisted in [5,31,35] to the inadequate representations of features in
those approaches. We proposed that these two definitions essentially point out
two sides of the same coin, and as such both must be considered together in
a given feature approach. In the next section, we specify the importance of
the themes of feature representation and composition and why they should be
considered in concert.

3.1 Importance of Feature Representation and Feature Composition

A feature as a domain concept was first introduced in the seminal work on
feature-oriented domain analysis (FODA) by Kang et al.[25]. A feature as a
software implementation paradigm was first put forward by Christian Prehofer
in [37]. Neither of these two lines of thought are complete without each other.
Domain concepts about a software system eventually need to be implemented.
Similarly, feature approaches such as feature-oriented programming where fea-
tures are used as a separation of concern mechanism [7], are incomplete as an
SPL implementation technique without an overlying structure of the software
system to which it is supposed to be applied. This structure is precisely the
domain concepts of that software system [1]. In other words, in real software
systems to be modeled as SPLs, the conceptual and concrete features need to
have similar semantics (indicating a uniform feature representation mechanism)
and the relationship between the conceptual features as well as their mappings
to the concrete features, need to be streamlined (indicating a coherent feature
composition mechanism). In the next two sections, we will give many examples
of this dichotomy and relate it to the representation and composition themes for
features.

3.2 Feature Representation

Feature representation in general has been treated lightly. It was considered that
so far as it achieved its intent of adding/composing functionalities, any represen-
tation of features served well. We make this point clear by tracing different ways
in which features have been represented in various existing feature approaches.

3.2.1 Using preprocessors and annotations Preprocessing techniques have
been used to implement features, such as conditional compilation using #ifdef
statements in C++4, or Munge which uses preprocessor directives hidden inside
comments in Java”. These techniques do not require the use of other concerns to
implement features as they are generally part of the host language compiler. The
code belonging to different features is simply put inside preprocessor directives,
and added to the source to be compiled depending on the features selected. The
use of pre-processor techniques for implementing features has been heavily crit-
icized. It is found by many researchers that using preprocessors to implement

7 http://weblogs.java.net /blog/tball /archive/2006,/09/munge_swings_se.html

features - 1) neglects the principle of separation of concerns, 2) is sensitive to
syntax, type, and behavioral errors, 3) obfuscates the source code, 4) and finally,
severely limits the reuse [28] of features. Interestingly, in spite of the lack of ab-
straction for the conceptual and concrete features, preprocessing approaches are
used in commercial software for product lines such as pure::variants [39], per-
haps owing to the conceptual simplicity of using preprocessors for implementing
features.

The virtual separation of concerns [28] is a unique approach that virtually
overlays annotations on the program elements belonging to specific features. It
is implemented on the top of the Eclipse IDE and is capable of using many
code related features of Eclipse. It attempts to address the problems related
to preprocessors by 1) using colors to annotate features virtually, 2) providing
support for views on features thereby emulating modularization of features, and
3) using disciplined annotations to prevent syntax, type, and behavioral errors.
Although the virtual separation of concerns approach is conceptually intuitive,
it lacks some obvious advantages of feature modularization. The reuse of feature
related code is still a problem in this approach since there is no way to address the
concrete features programmatically. Also if a code fragment belongs to multiple
features it is colored as many times, making it difficult to distinguish between
features. Although the editable views alleviate this complexity to some extent,
the need for more sophisticated tool support to address these issues becomes
apparent in complex scenarios [28].

3.2.2 Using concern-specific modularization mechanisms to imple-
ment features This category of feature approaches basically uses a representa-
tion of some other concern, such as e.g., aspects, teams, hyper-slices, units, and
traits etc., to implement features. What this means, is that main modulariza-
tion mechanism used in the underlying implementation technology is anything
but features. The rationale is to use the ability of given feature approach to
select /modify functionality of a program even though feature is not the main
mechanism of separation of concern in that technology. Examples of this kind
are implementing features in AspectJ via aspects [29], in Object Teams with
teams and roles [23], in Jiazzi via atoms and units [31], in Scala via traits [31],
and in HyperJ via hyper-slices [31]. Késtner et al. [29] implemented a case study
to refactor the Berkley DB to a feature-based application with 38 features. They
used aspects to represent features in terms of classes, inner classes, method ex-
tensions, and so on, essentially the elements in the Berkley DB source code that
were part of different features. They found that 1) the code readability and
maintainability decreased along with the number of features and correspond-
ingly with the number of aspects that were used to represent these features, 2)
all refactoring to feature-based design had to be done manually (because there
was no explicit representation of feature models), and 3) most expressive and
powerful constructs in AspectJ were not used (most of the unique character-
istics of aspects become unimportant when implementing features so long as
functionality can be introduced).

Hundt et al. presented a case study implementing features using Object
Teams [23]. In teams, concrete features must be mapped to teams, the main
modularization mechanism in the team programming model. A team can be
treated like a class as well as like a package that groups classes. Roles are classes
contained in teams that can be used to decorate other classes. Crosscutting fea-
tures are implemented as aspects. There are at least 5 different modular entities,
namely, classes, packages, teams, roles, aspects etc. Developers need a deep famil-
iarity with the teams programming model, the sheer number of different modular
entities interacting with each other creates a complex application scenario which
is difficult to maintain and evolve.

Lopez-Herrejon et al. [31] implemented features using Jiazzi components [34]
called units: atoms built from Java programs and compounds built from atoms.
Units are the main modularization mechanism and the main implementation
concern. Units have different modularization structure than classes. Different
features have to be packaged properly across atoms and compounds. Lopez-
Herrejon et al. [31] note that defining features in terms of Jiazzi signatures which
describe the packaging of code related to the concrete features and expressing
the relationships between the conceptual features was a non-trivial task.

They also implemented features in the Scala programming language using
traits [17], a unit of modularization in Scala that represents an abstract class
without state. They found that implementing program deltas, i.e. the code com-
ponents of features, in terms of traits was a non-trivial task as well, especially
specifying the order of method extensions with which program deltas were ma-
nipulated.

In the same case study, Lopez-Herrejon et al. [31] also implemented features
in HyperJ [36]. HyperJ represents concerns at a level of abstraction higher than
the individual concerns [36]. Its an implementation of multidimensional separa-
tion of concerns (MDSOC). A software system in HyperJ is implemented with
the idea that it can contain multiple concern dimensions (classes and features or
classes and aspects), and that it can be executed by projecting individual pro-
grams of the system by projecting their execution along concern hyperplanes.
Features can be implemented as hyperslices that group all units implementing
the feature. We believe that although the idea of higher abstraction in MD-
SOC is appealing, there are many drawbacks when the treatment of a individual
concern such as features is concerned. For example, Chitchyan et al. [10] found
that 1) in HyperJ, primary requirements, i.e., features, can not be traced in the
composed system, 2) it is difficult to comprehend how the composed system is
affected when addressing additional requirements.

3.2.3 Using structural forms of feature representation In this category
of feature approaches, we review those that use some form of representation for
features themselves as opposed to using other concerns. The AHEAD tool suite
[7] and FeatureC++ [4] are examples of such approaches. Both the AHEAD tool
suite and FeatureC++ treat features as refinements. The program variants are
created by composing features (refinements to base classes, stored in specific

folders) with the base program. Base classes and refinements (classes with the
same names but containing feature related code) are arranged in a hierarchy
of folders on a disk. A folder with only the refinements to specific base classes
denotes a feature. Both AHEAD and FeatureC++ have been used successfully
in many case studies. Although they are one step higher in abstraction to rep-
resent features, they have been known to face many problems [31,35]. We call
this type of representation of features as the structural representation, because
features now have their own representation (instead of being represented with
other concerns) and this representation is encapsulated in structures external to
the programs. This requires some kind of composer that would compose base
programs and refinements from different folders specified in equation files [9)].
Apel et al. [3,6] present a language independent superimposition approach to
feature composition. They introduce a new programming model called feature
structure tree (FST) which represents the abstract hierarchical structure of soft-
ware components. Features of software components represented such as base
programs and features as folders in AHEAD[7] are composed by composing the
feature structure trees. An FST is a high level abstraction of hierarchical rep-
resentation (such as folders on a disk or XML documents with tags that act
as containers). This approach makes FSTs a very useful and more general soft-
ware composition approach but as far as features are considered, one form of
structural representation (folders) is replaced with another (FSTs).

These representations are one step closer to representing features natively.
What they miss out is a connection to feature modeling concepts. AHEAD pro-
grams are composed using equation files that contain equations which determine
the order of composition of refinements in different folders. An equation file is
essentially a rudimentary form of the modeling specification. In the next cate-
gory of feature approaches, we review approaches that consider the important
relation between feature modeling concepts and actual implementation of fea-
tures. Although these approaches do not represent features themselves at the
most appropriate level of abstraction, they provide support for feature modeling
and provide a link between feature modeling and feature implementation.

3.2.4 Using representation of feature modeling concepts towards fea-
ture implementations Deursen and Klint proposed a feature description lan-
guage in [16]. Although their research is more domain specific language (DSL)
oriented than related to feature implementations, they created a DSL over fea-
ture diagrams called Feature Description Language (FDL) which is of our inter-
est. The FDL represents conceptual features in terms of feature definitions and
operations. Feature operations in FDL are constructed using feature diagram al-
gebra. This algebra consists of various rules such as transformation of the feature
expressions to disjunctive normal formulas, normalizing these transformation to
enumerate possible variants etc. The constraints in the feature diagrams are con-
verted into satisfiability constraints over the propositional formulas. A variant is
represented as a list of selected features. The concrete features are represented
by classes. The relations between conceptual features are modeled with aggrega-

tion, associations, subclasses, etc [16]. This indicates that the concrete features
have no explicit representation in the FDL.

Loughran et al. presented the variability modeling language (VML) in [33].
The VML supports first-class representation of architectural variabilities. It is an
architectural description language; it considers the problem space to be feature
models whereas architectural models are the solution space. While the VML de-
scriptions of the conceptual features consist of representation of variation points,
cardinalities of features, constraints, etc., the concrete features are implemented
as components.

This category of approaches indicates the need of a good representation, not
only for the concrete features, but also the conceptual features which are in
essence execution specifications for a given product line.

Summarizing feature representations
We summarize the theme of feature representation in the following:

— There has been a progression from using preprocessor mechanism with no
abstraction for features, to using a complex non-native representation of
features (because they are represented in terms of other concerns), to giving
them a structural representation with the composition specification external
to the implementation, to using a representation of feature models to guide
the process of product derivation.

— In any feature representation, two components are required to be addressed -
one, the actual implementation of features themselves and two, the structure
of features, variants, and the product lines, expressed in terms of feature
models, i.e., the features and the composition specification, respectively. Any
representation addressing only one of the two would fall short of achieving
full capabilities of features as semantic entities of their own accord.

— Only when both the conceptual and concrete features are represented as
same entities, the process of composing them could be streamlined.

In the next section, we describe the theme of feature composition with respect
to the four categories of feature representation. Although some details of feature
composition are already laid out in the description of feature representations,
we try to abstract the progression of feature composition methods used along
with these representations.

3.3 Feature Composition

Feature composition is the process of combining together various fragments of
code scattered in different kinds of modules implementing a software product
line to obtain an executable version of a product variant. Feature composition
is intricately connected to feature representation. The ways in which features
in given approach can be composed depend substantially upon how they are
represented: whether using preprocessing mechanisms, whether in terms of other

concerns, externally in a structural format, or deriving from model specifications.
We make this point clear by taking review of how composition is carried out with
respect to each of the aforementioned categories of feature representation.

3.3.1 Composing features using preprocessors and annotations The
composition of features represented using preprocessors and annotations happens
via conditional compilation and code generation based on views respectively.
Since there is a complete lack of abstraction (at least in case of preprocessors),
it is extremely difficult to realize a reusable form of composition or configuration
specification.

Previously, feature approaches have been segregated into compositional and
annotative approaches [26]. Obtaining a product variant using preprocessors
or annotations consists of projecting the selected features along with the base
program. We deem this to be feature composition rather than feature projection
(which we deem the process of obtaining only the code fragments belonging to
features as opposed to a complete variant which would also contain the base
program), since according to our definition, feature composition is any process
in which a product variant is synthesized from a set of features.

3.3.2 Composing features represented as other concerns Implementing
features in terms of teams in Object Teams calls for complex modular arrange-
ment of feature related code [23]. Object Teams maps features to constructs that
control activation of teams and roles (classes contained in teams). This mapping
of feature models to teams and roles must follow structural semantics of Object
Teams e.g., different kinds of features such mandatory, optional, alternative,
exclusive features with is-a or part-of relations must be mapped properly to in-
dividual teams and roles forming a hierarchy of teams. Composition of features
thus represented happens via activation teams, teams that control activation of
other teams [23]. Similar observations can be made about features implemented
in terms of Jiazzi units or Scala traits. Features represented as Jiazzi units must
follow the modular hierarchy of atoms and units. Composition specification for
these atoms and units is in the form of the open class pattern, which is used to
define feature composition. When represented as traits in Scala, features must
be represented in terms of combinations of Scala classes and traits and the com-
position specification needs to be applied in terms of deep mixin composition
[31]. When features are represented in terms of other concerns and corresponding
modular forms, the composition of such features depends on the semantics of
these concerns and their modular entities. The semantics of concerns might be
such that the developer might have to follow workarounds (to create appropri-
ate mappings) or it might be more than enough capable of implementing various
feature related functionality (such as when using aspects to implement features;
most semantic capabilities of aspects remain unused [29]). Furthermore, features
implemented in code must have a composition specification of one form or the
other. In other words, although features represented as other concerns can in-

10

deed be composed because modular entities of that concern can be composed,
the developer still needs further configuration specification.

3.3.3 Composing features represented using structural forms Features
are represented in AHEAD in terms of refinements, which are placed in specific
folders. An equation file dictates the order of composition of these refinements.
The refinements are weaved using aspectual mechanisms. FeatureC++ goes one
step further and provides support for dynamic composition via code generation
by creating a delegation hierarchy atop refinement classes [38]. This further
complicates the feature composition because to use dynamic composition SPL
classes and the delegation classes must be arranged in a proper hierarchy. In
case of composition with FSTs by Apel et al. [6], components (any modular
structures) are represented as tree data structure. Two trees are composed by
adding contents of the root node and from there on proceeding recursively. This
composition requires that these nodes are at the same level as well as their
names and types are same. FSTs act at a higher level of abstraction, but still
require composition specification (in terms of folder hierarchy in AHEAD for
composition of AHEAD modules using FSTs).

In both these cases, a step toward native representation does not add more
capability to features as native entities, because features are simply abstracted
away in a structural form, but no implicit composition specification in the form
representation for feature modeling concepts exists.

3.3.4 Composing features represented with the feature modeling spec-
ification Feature diagrams represented in the FDL are mapped to UML dia-

grams as discussed in Section 3.2.4. These mappings are represented using XML

metadata information exchange format and imported to UML modeling tools

which are used for generating Java classes [16]. The VML uses the concept of

references and actions [33], which act as component activation and component

composition decisions. Along with the feature descriptions, the references and

actions are used to compose components to obtain product variants.

Both FDL and VML come close to our idea of representing feature modeling
concepts as a language. While they score on this end of the line, the other end
is left loose by not providing native representation for features actually imple-
mented in the code. Using native representation of only the feature modeling
concepts falls short in alleviating indirections one has to follow in creating prod-
uct variants.

Summarizing feature composition
We summarize the theme of feature composition in the following:

— Feature composition is substantially influenced by the way features are rep-
resented.

11

— When the concrete features have no native representation, their composi-
tion translates into composition of other concerns, external structures, or
mapping to components or code generation tools. This results in alienating
the identity of both the conceptual and concrete features in the composed
variants. Consequently, such problems as feature untraceability, difficulty in
reconfigurations etc. arise.

— These problems can be avoided if both the conceptual and concrete features
were represented uniformly, with their composition integrated in a common
semantics.

In the next section, we specify the requirements of representing and composing
features as first-class entities. We elaborate on FeatureJ, an extension of Java,
with which we realize our vision of the features as first-class entities. We lay
out the background with the explanation of the JastAdd extensible compiler
system, followed by the class-loading idiosyncrasies in Java. We then describe in
detail the syntax and semantics of FeatureJ, by discussing the FeatureJ compiler
architecture.

4 Featureld

Based on the discussion so far, we can observe that either there are approaches
that take a step towards giving the implemented features a better representa-
tion or those that have represented feature modeling concepts natively. Neither
of these have a uniform representation of both the implemented features as well
as the feature modeling concepts. This is the main motivation behind creating
FeatureJ. It is one of our design goals that we match feature modeling with
feature implementation in this language extension, i.e., represent the conceptual
and concrete features by the same mechanism, which also includes composition
of both kinds. Before we proceed to explain how features are represented and
composed in FeatureJ, we outline some of the properties of the features repre-
sented natively or the features represented as first-class entities. With first-class
features, the product line concepts in a given domain can be realized more clearly
at the implementation level. Based on the properties of first-class entities, we
specify the requirements of implementing features as first-class entities as en-
listed below :

1. Instead of using other mechanisms to represent and compose features, fea-
tures should be represented as native first-class types or first-class entities
in the host language [40].

2. First-class features should represent the conceptual and concrete features
uniformly as discussed in Section 3.2.

3. Semantics of the first-class features should be rich enough to subsume feature
composition as discussed in Section 3.3.

4. The identity of features should be retained throughout the life cycle of an
application to enable a more controlled manipulation of the functionality of
features [40].

12

5. First-class features should be extensible with respect to advances in feature
modeling and feature composition.

While we chose the Java programming language to be the host language as it
is used prominently in product line research, the first-class representation of
features outline above can be implemented in any programming language. As
a matter of fact, we have implemented an initial prototype of the first-class
features as a language extension of the Ruby language, called rbFeatures [20,21].

4.1 Java Classloading Idiosyncrasies

A Java application runs with a Java Virtual Machine (JVM) that interacts with
Java classes in the .class file format. Creating first-class product lines and prod-
uct variants atop a Java application indicates that for a given application many
program variants may exists simultaneously. Consequently, we have to address
different versions of the application classes. This is shown in Figure 2. Whereas
a regular Java program only runs a single version of class(es)/interface(s) com-
prising it, running a FeatureJ program consists of running many versions of the
same class(es)/interface(s) (belonging to different variants). Various properties
of Java classes, class loaders, and classpaths come into play in such a scenario.

Referring to different versions of the same class This scenario takes
place when multiple variants exist simultaneously consisting of different versions
of the same SPL class. All classes in a Java application are loaded using some
subclass of the ClassLoader class. Classes are referred to by the qualified name
format, which begins with the package name and ends with the class name.
However, this qualified name is not sufficient for the JVM to distinguish a class.
The JVM identifies a class uniquely by a combination its qualified name and
the effective class loader, i.e., the class loader that loads this class. The loading
of the user classes by the custom class loaders is delegated to the primordial
class loader. When both versions of the class A are on the classpath, they are
equivalent to the JVM because their qualified name is same and they share the
same class loader which is the primordial class loader. To distinguish between
the classes from different variants, they must be placed in a path that is not in
the classpath of the SPL application.

Reloading modified versions of the same class This scenario takes place
when a variant is modified by adding or removing a feature. When a class is
loaded, all classes it references are loaded recursively. A class is only loaded
once and then cached in the class loader by the JVM to ensure that the byte
code of the class does not change. Reloading the class is therefore not possible
using Java’s class loaders. To reload a class the developer needs to implement
a custom class loader. Even with a custom class loader, classes that have been
resolved and loaded cannot be reloaded by the same custom class loader. Also,
the objects of classes that have exactly the same qualified name but loaded by
two different ClassLoader instances are treated as objects from different classes.

13

Java Program

l

.java/.jar files
containing classes,
interfaces, packages,

(a) Java program

FeatureJProgram

]

Variant 1 Variant 2 Variant n
Java Java Java
Program Program Program
.java/.jar files .java/.jar files .java/.jar files
containing containing containing
classes, classes, classes,
interfaces, interfaces, interfaces,
packages, packages, packages,

(b) FeatureJ program with many program variants

Fig. 2: Difference between the Java and FeatureJ program execution

Object of one of such classes cannot be cast to the other and doing so results
in the ClassCastException because their classLoaders do not match. In order
to overcome this limitation, two methods can be used. 1) The developer can
use an interface as the object type and reload the implementing class, or 2) the
developer can use a superclass as the object type and reload the extending class.
In both these cases, the type of the object, i.e., the interface or the superclass
is not reloaded. Keeping the interface or the superclass constant, we can reload
the implementing class or the extending class respectively.

4.2 JastAdd: Extensible Compiler System

We use JastAdd®,a Java based compiler construction system [22], to implement
FeatureJ. The JastAdd compiler system enables modular and extensible speci-
fication of compiler analyses. JastAdd is based on a language formalism called
Rewritable Circular Reference Attributed Grammars (ReCRAGs). It uses an

8 http://jastadd.org/the-jastadd-extensible-java-compiler

14

object-oriented Abstract Syntax Tree as the main data structure. Various lan-
guage entities are represented as nodes and sub-trees and semantic behavior is
added in terms of attributes on such nodes. Behavioral modules are composed
using static aspects. The ReCRAGs allow decoupled computation of various
analyses, e.g., if type checking module needs information from name resolution
module then such information is obtained by evaluating concerned attributes
without having to explicitly specify the order. As the behavior specification is
independent of the order of attribute evaluation (from the developer’s perspec-
tive) different chunks of behavior can be added to language entities assuming
that all the necessary information for this module is available. We chose JastAdd
for two compelling reasons: 1) By delegating the task of obtaining specific piece
of information to separate attributes (which are themselves grouped modularly
in JastAdd aspects), JastAdd makes writing various compiler analyses extremely
intuitive. 2) The JastAdd compiler contains implementations of Java 1.4 and 1.5
frontends and backends. This implementation is known to comply to the Java
language specification more than other Java compiler implementations [18].

5 Feature Representation in FeaturelJ

Based on the requirements of first-class feature representation and composition
outlined in Section 4, we implemented features as first-class entities in the Java
programming language. We made two design choices when implementing Fea-
tured.

1. We implemented features as well as product lines and product variants as
types, more precisely as reference types in Java. The reason for this is that
considering a native representation there is no other language entity in Java
that is semantically rich enough to capture everything we wanted to imple-
ment about features as first-class entities.

2. Given the fact we wanted to reify the features (which means that we wanted
all the information about features, product lines, and product variants pre-
served and available at runtime), we had two options to begin with: 1) store
them as bytecode attributes to be processed later or 2) reify the features to
a meta-class library that is external to the AST but still part of the FeaturelJ
compiler. In the first case, it would have been difficult to make use of Jas-
tAdd’s attributes based computational capabilities (as JastAdd contains a
Java to bytecode backend but not the other way round). We therefore chose
the second option.

Based on our first design choice, we extended the Java 1.4 AST with type
declarations for product lines, product variants, and features, as well as its lex-
ical and parsing specifications to accommodate the FeatureJ vocabulary. The
reification of FeatureJ types takes place via the meta-classes PL, PLVariant,
and Feature. This compiler design is shown in Figure 3. Different extensions
to Featurel itself are modularized into a set of lexer, parser, AST, and seman-
tics files which are combined together and composed with corresponding Java

15

1
| . !
Java 1.4 Compiler in } |
JastAdd } FeatureJ extends }
| |
e | | |
Java 1.4 Lexer | | ! ‘ FeatureJ Vocabulary |
| |
Java 1.4 Java1.4Parser [T FeatureJ productline, !
Frontend variant, and feature | [T """ T T T TTTTTTT |

specification

|
| | 1
| | 1

— Java 1.4 AST I | -

specification for | I | Meta-class Library -- | |
\L Name | I PL, PLVariant, and | |
Resolution, Type ! Reification of AST nodes | | Feature !
Java 1.4 Analysis, Definite | || | _representing features; (" encapsulating !
Backend Assignment etc. For Name and Type Analysis of | | FeatureJ Types !
Java types FeatureJ types | !

Java 1.4 to .class
Transformation

Fig. 3: FeatureJ Implementation using JastAdd

1.4 compiler specifications of JastAdd. Since the Java 1.5 compiler in JastAdd
is itself an extension of Java 1.4 compiler, FeatureJ can be used as is for the
language constructs in Java 1.5 that are common to Java 1.4. Furthermore,
for newly added constructs (such as enhanced for statements), FeatureJ works
without additional lexical, parsing, and AST components, because feature con-
tainments (blocks of code containing code fragments belonging to features) in
FeatureJ include language entities at an abstract level, such as any statements
in a method (including enhanced for statements which subclass the Statement
class in the AST). Any extension built upon JastAdd’s implementations of Java
1.4/1.5 compilers can be made feature-aware by combining that extension with
FeatureJ. For completely new language constructs such as annotations in Java
1.5, FeatureJ can be extended with the minimum of effort to include them in
feature containments.

FeatureJ Syntax

In order to describe the FeatureJ syntax, we make use of the EPL. The EPL is
an application of SPL concepts to the expression problem [32]. It treats the func-
tionality of adding different operations on predefined data types as features. The
data types consist of literals, additive expressions, negated expressions whereas
the operations consist of printing and evaluating the expressions. The EPL can
be represented as a two-dimensional matrix in which rows and columns indicate
combinations of the data types and the operations [31]. We represent this matrix
as a feature diagram as shown in Figure 4. The feature ap indicates the function-
ality of applying the printing operation on the additive expressions. Similarly,
the feature ne indicates the functionality of applying the evaluation operation to

16

EPL

Fig. 4: Feature Model of the Expression Product Line

negated expressions. Listings 1.1 to 1.7 show the EPL implementation adapted
from [31]. The FeatureJ implementation of the EPL? uses six classes (includ-
ing the test driver and the application launcher) and one interface Exp. The
interface Exp (Listing 1.2) contains the two methods print() and eval() corre-
sponding to the two operations printing and evaluation. The classes Lit, Add,
and Neg extend the interface Exp (Listings 1.3,1.4, and 1.5 respectively). The
class EPLTest (Listing 1.6) is a test driver to test various combinations of data
types and operations. The class PLDefine (Listing 1.1) contains the EPL dec-
laration, whereas the class Launcher (1.7) contains declaration of two variants
and shows how they can be executed in FeaturelJ.

Listing 1.1: The EPL declaration in FeatureJ

1 package testEPL;
2 public class PLDefine {
3 productline EPL {

4 features {

5 Print: more(lp, ap, np),
6 Eval : more(le, ae, ne)
7 }

8 all (Print, Eval)

9 }i

10 }

productline Declaration Syntax. Listing 1.1 shows the productline type dec-
laration for the EPL. The features block in the productline type declaration of
the EPL contains features expressions separated by commas. Each expression in
the features block identifies a pair of a parent feature and the child feature(s)
along with the quantifier (denoting the feature relation). The more quantifier
on the feature set {lp,ap,np} indicates that in a given variant type definition,
one or more of the features Ip, ap, and ne can be selected for the parent feature
Create. The top level features along with the top level quantifier are specified

9 http://firstclassfeatures.org/index.php?n=FeatureJ.ExpressionPL

17

immediately outside the features block. The optionality of features is indicated
by the ? symbol. The EPL does not contain any constraints. The constraints,
if present, between a pairs of features are defined in the constraints block. The
expression A <-> B is used to indicate an inclusion constraint between the fea-
tures A and B and the expression A >-< B is used to indicate an exclusion
constraint between the features A and B.

A productline type declaration is not required to be specified in a separate
class. It can appear as a body declaration in any of the SPL classes since its
scope is package wide.

Feature Containments Syntax. Various code fragments belonging to the
features declared in the productline type are put inside what we call feature
containments. Listings 1.2 to 1.6 show different kinds of feature containments
available in Featureld.

Listing 1.2: Interface for expressions

1 package testEPL;

2 public interface Exp {

3 feature EPL 1lp {

4 public void print();
5 }

6 feature EPL le {

7 public int eval();

8 }

9 }

The lines 9-13 and 14-18 in Listing 1.3 show feature containments of methods
print() and eval() in the Lit class for features lp and le respectively. For a given
class A, any or all of the field declarations, methods, constructors, and inner
classes can be part of feature containments in FeatureJ. The lines 3-8 in Listing
1.3 show feature containment of the combination of a field declaration and the
constructor of the Lit class.

Listing 1.3: Implementing the literals

1 package testEPL;
2 public class Lit implements Exp {
3 feature EPL 1lp, EPL le ({

4 int value;

5 public Lit (int v) {

6 value = v;

7 }

8 }

9 feature EPL 1lp {

10 public void print () {

11 System.out.println(value);
12 }

13 }

14 feature EPL le {

15 public int eval() {
16 return value;

17 }

18 }

19 }

Listings 1.4 and 1.5 show similar feature containments in classes Add and
Neg respectively.

Listing 1.4: Implementing the additive expressions

1 package testEPL;
2 public class Add implements Exp {
3 feature EPL ap, EPL ae {

4 Exp left, right;

5 Add(Exp 1, Exp r) {

6 left = 1;

7 right = r;

8 }

9 }

10 feature EPL ap {

11 public void print () {

12 left.print ();

13 System.out.print ("+");
14 right.print();

15 System.out.println();
16 }

17 }

18 feature EPL ae {

19 public int eval() {

20 return left.eval() + right.eval();
21 }

22 }

23 }

The code fragments constituting more than one features are contained by
specifying all the features to which they belong as shown in the line 3 in each of
the listings 1.4 and 1.5.

Listing 1.5: Implementing the negative expressions

1 package testEPL;
2 public class Neg implements Exp {

3 feature EPL np, EPL ne {
4 Exp expr;

5 public Neg (Exp e) {

6 expr = e;

7 }

8 }

9 feature EPL np {

10 public void print () {

19

11 System.out.print ("-(");

12 expr.print () ;

13 System.out.print (")");
14 }

15 }

16 feature EPL ne {

17 public int eval() {

18 return expr.eval() = -1;
19 }

20 }

21 }

The lines 3, 4, and 5 in listing 1.6 show individual field declarations contained
by multiple features. Like classes, any or all of the statements inside a method, a
constructor, or an inner class can be part of the feature containments in FeaturelJ.
This is shown in lines 7-9, 10-12, and 13-15 in Listing 1.6, where field assignments
statements inside the EPLTest constructor are contained by different features.
Similarly, lines 18-23 in Listing 1.6 show individual statements (method calls for
methods print() and eval()) contained in different features.

Listing 1.6: Test driver for EPL

1 package testEPL;

2 public class EPLTest {

3 feature EPL lp, EPL le { Lit ltree; }
4 feature EPL ap, EPL ae { Add atree; }
5 feature EPL np, EPL ne { Neg ntree; }
6 public EPLTest () {

7 feature EPL 1lp, EPL le {

8 ltree = new Lit (3);

9 }

10 feature EPL ap, EPL ae {

11 atree = new Add(ltree, ltree);

12 }

13 feature EPL np, EPL ne ({

14 ntree = new Neg(ltree);

15 }

16 }

17 public void run() {

18 feature EPL lp { ltree.print();}

19 feature EPL ap { atree.print();}

20 feature EPL np { ntree.print();}

21 feature EPL le { System.out.println(ltree.eval());}
22 feature EPL ae { System.out.println(atree.eval());}
23 feature EPL ne { System.out.println(ntree.eval());}
24 }

25 }

Variant declaration and generation syntax. To obtain a specific variant
of the EPL productline, a variant declaration is used as shown in lines 5-8 and

20

9-12 of Listing 1.7. The expression variant EPL addEzpression indicates that
addExpression is a variant of the EPL productline. The variant types addEx-
pression and negateExpression in the Launcher class indicate two possible ways
in which the productline type EPL can be configured.

The productline, variant, and feature types thus declared need to be bound
or registered to their respective meta-classes as shown in Listing 1.7. We call the
PL, PLVariant, and Feature classes as meta-classes in the sense that these classes
are used by the FeatureJ compiler to govern the behavior of the corresponding
FeatureJ types. To process the FeatureJ types in a variety of ways, composing
and modifying variants at runtime, querying the structures of the productline and
variant types, and querying various properties of the feature types, such as its
dependent features etc. can be done using instances of the corresponding meta-
classes.'® A PL meta-class object encapsulates the productline type specified
in its constructor’s argument as shown in the line 14 of Listing 1.7. Similarly,
a PLVariant meta-class object encapsulates a wvariant type. The arguments to
the constructor of a PLVariant object must also specify the PL object which
encapsulates the parent productline type of this variant type as shown in lines
16 and 21 of Listing 1.7. The objects of the classes specific to a given variant type
can be accessed by using the getVariantObject method of a PLVariant object as
shown in lines 17-18 and 22-23 of Listing 1.7.

Listing 1.7: Binding types to meta-classes and executing variants

1 package testEPL;

2 import com.unimag.sag.featurej.x;

3 import com.unimag.sag.featurej.meta.x*;
4 public class Launcher {

5 variant EPL addExpression {

6 Print = [lp and ap],

7 Eval = [le and ae]

8 i

9 variant EPL negateExpression {

10 Print = [lp and np],

10 These meta-classes are conceptually similar to the meta-classes in the Groovy
language[24]. Groovy is a dynamic language for the JVM. The meta-classes in
Groovy implement the meta-object protocol for the Groovy and Java classes and
mechanisms such as aspect orientation can be built in Groovy by extending the
meta-classes. This is related to our second design choice for FeatureJ. By using in-
stances of the FeatureJ meta-classes to represent FeaturelJ types, we can easily reify
all properties of the FeatureJ types, without resorting to internal transformation of
FeatureJ types to byte-code representation. This also enables a developer to process
feature, variants, and product lines at compile time via the FeatureJ types, and at
runtime, via the instances of the meta-classes. Although the use of these classes can
be completely hidden behind a custom syntax for type instantiation and type usage
for the FeatureJ types so that a developer only deals with the FeatureJ types, we
have chosen to retain the use of these classes for the current version of FeatureJ for
experimental purposes. In future versions of FeatureJ we intend to add such custom
syntax for FeatureJ types.

21

11 Eval = [le and ne]

12 };

13 public static void main(String[] args) {

14 PL EPL=new PL("EPL");

15 //Running addExpression variant

16 PLVariant AExpr=new PLVariant (EPL, "addExpression");
17 EPLTest aExprTest=

18 (EPLTest)AExpr.getVariantObject ("EPLTest");

19 aExprTest.run();

20 //Running negateExpression variant

21 PLVariant NExpr=new PLVariant (EPL, "negateExpression");
22 EPLTest nExprTest=

23 (EPLTest)NExpr.getVariantObject ("EPLTest");

24 nExprTest.run();

25 }

26 }

When the productline, variant, and feature types are encapsulated inside the
objects of the meta-classes PL, PLVariant, and Feature, they follow the visibility
mechanisms applicable to regular Java classes!!. On the other hand, the scope
of both the variant and feature types is package wide and they are always used
by qualifying their names with the name of the productline type to which they
belong.

Default granularity of features in FeaturelJ
In FeatureJ, the default granularity of features is as follows:

— Inside a class, one or more class body declarations, i.e., field declarations,
method declarations, and constructor declarations, can be contained in a
feature. To indicate to FeatureJ that the entire class is to be part of a
feature, all class body declarations need to be contained in that feature.
Different body declarations within a class may belong to zero (indicating
that the body declaration belongs to the base program) or more features.
The same is applicable to inner classes.

— Inside an interface, one or more interface body declarations, i.e., abstract
method declarations and constants, can be contained in a feature. Like a
class, to indicate to FeatureJ that the entire interface is part of a feature, all
interface body declarations need to be contained in that feature.

— Inside a method, one or more statements can be contained in a feature.
Different statements or sets of statements may belong to different features.
The same is applicable to constructors.

The default granularity of features in FeatureJ can be easily extended to finer
level such as a for statement, so that the statements inside the for block can be

1 Qee examples of encapsulating feature type in an object of meta-class
Feature in the Graph Product Line example -
http://firstclassfeatures.org/index.php?n=FeatureJ.GraphPL

22

contained in a feature. To extend the default granularity levels in FeatureJ, a de-
veloper needs to implement the ContainerNode and ConstituentNode interfaces
in the FeatureJ compiler. An example of classes implementing the ContainerN-
ode and ConstituentNode interfaces is the FeatureJ AST classes ClassDecl and
FeatureAsMemberInClassesDecl respectively. To extend the granularity to for
statements, a developer would have to create an AST node representing set of
statements inside the for block, such as FeatureAsMemberInForStmt. Then the
ForStmt class in the FeatureJ AST (representing for statements) needs to im-
plement the ContainerNode interface whereas the FeatureAsMemberInForStmt
would need to implement the ConstituentNode interface. The granularity can
similarly be extended to a coarser level such as packages, so that one or more
classes in a package can be contained in a feature.

6 Feature Composition in FeaturelJ

FeaturelJ represents both the conceptual and concrete features by the same mech-
anism, as types. This enables performing modeling operations as well as compo-
sition as part of type analysis process of FeatureJ. In the next section we explain
the FeatureJ compiler architecture that makes this possible and then elaborate
on the feature composition process.

6.1 FeatureJ Compiler Architecture Enabling First-class Features

As discussed earlier in Section 4.1, FeatureJ differs from other implementation
approaches in the fact that multiple product lines and product variants may
exist at the same time (this similar to multiple objects of a class existing simul-
taneously). Once various SPL concepts are raised to the first-class status, this is
a step analogically similar to one class multiple objects scenario. This requires
a meta-level access to the FeatureJ types which is provided via meta-classes
PL, PLVariant, and Feature. These meta-classes not only oversee the binding
of productline, variant, and feature types to PL, PLVariant and Feature ob-
jects respectively, but also provide the runtime access to these types. FeatureJ’s
compiler architecture that enables first-class representation and composition of
features is shown in Figure 5. It consists of two phases: in the first phase, the
infrastructure required for variant generation and execution is created and the
second phase constitutes the composition of features.

First phase - creating the infrastructure The FeatureJ compiler proceeds
in two phases when input with .fjava files and the required .jar files. The first
phase in the FeatureJ compiler consists of 1) parsing the .fjava files 2) creating
the folder hierarchy for later generation of program variants, 3) generating in-
terfaces for the SPL classes, and 4) enabling selection of execution type. The
syntactic error(s) if any, is found during parsing of the .fjava files. If there is
no syntactic error (in FeatureJ type declarations or feature containments) then
the compilation proceeds to the first phase where a folder hierarchy is generated

23

that corresponds to the variant definitions and the packages in the classes of the
SPL. For example, given that EPL classes are part of the test EPL package and
the program contains two variant definitions (addExpression and negateExpres-
sion) then FeatureJ generates following directories in a temporary directory: 1)
Main\testEPL - For storing the abstract classes corresponding to SPL classes +
any interfaces in the testEPL package 2) addExpression\testEPL and negateEx-
pression\testEPL - for storing the implementations of the abstract classes. These
directories are used in the second phase to store implementations of SPL classes,
thus providing a separate namespace. This enables avoiding the classpath prob-
lems stated earlier in Section 4.1. To avoid classloading problems in reloading
different versions of classes from different variants, FeatureJ generates an ab-
stract class for each SPL class, that provides a common interface against which
specific implementations are generated based on the variant type definitions.

If there are many packages or nested packages in SPL classes then a corre-
sponding hierarchy of folders is generated. Thus, given that one of the SPL classes
is the class Neg 1.5, then an abstract class Neg is generated in Main\testEPL
folder as shown in Listing 1.8, the implementations of which are generated in
the addExpression\testEPL and negateExpression\test EPL folders in the second
phase.

Listing 1.8: Abstract class Neg for the SPL class Neg

1 package testEPL;

2 public abstract class Neg extends Object implements Exp {
3 public abstract int eval();

4 public abstract void print();

5 }

FeatureJ preserves any inheritance relationships (via abstract classes or inter-
faces) that pre-exist between the classes in a FeatureJ program.

FeatureJ requires that the user specify an application entry point. In the final
step of the first phase, an application container is generated using the specified
application entry point based upon the execution type of FeatureJ program
selected earlier, i.e, whether the FeatureJ program is to be run as a regular Java
application or as a test application (this is done by selecting a -appMain or
-testMain command line option).

Second phase - variant generation using FeatureJ types The main idea
behind FeatureJ is to reify the features and the related information and to raise
the status of product lines, variants, and features to being first-class entities. A
FeatureJ program may contain many productline types over a set of classes, in-
terfaces, and packages, which are written as .fjava files with feature declarations
and containments and sent to the FeatureJ compiler. The FeatureJ compiler pro-
cesses each productline via the objects of the meta-class PL, and its variants are
generated via the objects of the meta-class PLVariant. Each variant essentially
contains specific code compositions of classes, interfaces, and packages that were
input to the FeatureJ compiler. The user can interact with the variant programs

24

‘ FeatureJ Compiler ’

Parsing Name resolution for FeatureJ
types
Generate the base T
folder hierarchy
T Type analysis of FeatureJ types
Generate interfaces for the Bind PdeuCtpliLne
SPL classes + 'YP:;jte‘: tas
Generate the application Execute the
Main application Bind variant types .
Main to PLVariant Bind feature types
T objects to Feature objects
,,r""Select application Launcher based Semantic Chegking of Indi‘{idual
: on the command line option program variants (.java files)

Fig. 5: FeatureJ Compiler Architecture

using the objects of classes of a specific variant. These objects are the objects of
the regular Java classes and as such can be used as parameters to a method call,
return values from functions, iterator objects (e.g., to iterate over only the leaf
features of a variant) etc. We begin by describing the name resolution process
of FeatureJ types and follow with the explanation of type analysis of the same
in the next section.

6.2 FeatureJ Name Resolution

A FeatureJ program may contain many productline types and correspondingly
many variant and feature types. The name resolution of these types builds upon
the Java name resolution mechanism of JastAdd as discussed in Section 4.2.
These types do not have the access level modifiers, because they all have package
level visibility by default. The feature and wvariant types are declared within the
context of the parent productline type. A productline type in a different package
can be imported just like the regular Java types in that package. When resolving
variant and feature type names, they are checked against their parent productline
type. This typically consists of checking for missing/double declarations of a
feature type, checking for existence of feature types used in the wvariant type
declaration, checking for existence of feature type used in the feature containment
expressions, and checking that a variant type of a given productline type refers
only to the features of that productline.

25

6.3 FeatureJ Type Analysis

The type analysis in FeatureJ consists of steps ranging from validating variant
types against parent productline type to binding all FeatureJ types to meta-class
objects and composing individual variants.

Structural validation of variant types. The first step consists of checking
the structure of a variant based on its parent productline type for any inconsis-
tencies in the feature selection based on the specified quantifiers and the inclusion
and exclusion constraints. This basically involves validating the quantifiers on
groups of features. For example, if the productline type consists of an expression
like Eval : more(le, ae, ne), then FeatureJ ensures that a variant of this product-
line must select at least one or more of the features le, ae, or ne for the feature
Eval.

Constraint resolution per variant type(s). In the second step FeaturelJ
checks that all inclusion and exclusion constraints are satisfied for a given vari-
ant, e.g., suppose there was an inclusion constraint like ae <-> ne in a productline
type declaration of EPL, then FeatureJ ensures that if any variant of this pro-
ductline must select feature ne if the feature ae is selected in that variant. The
structural validation and constraint resolution is done on per product variant
basis, rather than for an entire product line as suggested in [41].

Validating bindings of FeaturedJ types to meta-classes. The third step in
type analysis in FeatureJ is to validate the binding of the productline, variant,
and feature types and generate individual variants. During the instantiation
of PLL and PLVariant objects, FeatureJ checks for existence of corresponding
productline and wvariant type in the repository. The internal data structures
in the FeatureJ compiler store the complete structures of any productline and
variant types defined in the program as well as feature containments (i.e., code
fragments) along with the feature names. This repository essentially helps in
reifying all feature related information so that valid program variants may be
generated during the execution of a FeatureJ program.

Thus, given that Neg (Listing 1.5) is one of the SPL classes for which an
abstract class Neg (1.8) was generated in Main\testEPL folder, then for the
variant type negateExpression, an implementation is generated in the negate-
Expression\testEPL folder as shown in Listing 1.9.

Listing 1.9: Implementation of Neg for the variant negateExpression

1 package testEPL;

2 import com.unimag.sag.featurej.dynamic.x;
3 public class NegImpl extends Neg {

4 Exp expr;

5 public NegImpl (Exp e) {

6 super () ;

7 expr = e;

26

8 }
9 public void print () {

10 System.out.print ("-(");
11 expr.print();

12 System.out.print (")");
13 }

14 public int eval() {

15 return expr.eval () * -1;
16 }

17 }

The addExpression variant type does not contain the features np and ne, con-
sequently the implementation of the EPL class Neg is generated with default
method implementations that raise errors as shown in Listing 1.10. This imple-
mentation resides in the addExpression\testEPL folder.

Listing 1.10: Implementation of Neg for the variant addExpression

1 package testEPL;

2 import com.unimag.sag.featurej.dynamic.x;
3 public class NegImpl extends Neg {

4 public void print () {

5 throw new Error ("This method has not been
6 implemented for " + getClass () .getName());
7 }

8 public int eval() {

9 throw new Error ("This method has not been
10 implemented for " + getClass () .getName());
11 }

12}

The implementations shown in Listings 1.9 and 1.10 are available in the PLVari-
ant objects NExpr and AExpr. A Neg object of negateExpression wvariant is
obtained via a PLVariant object (such as NExpr PLVariant object that encap-
sulates negateExpression variant) using the getVariantObject method as shown
in Listing 1.7.

Ezact error reporting in FeatureJ. FeatureJ uses the Java semantics mod-
ules of JastAdd for semantically checking each of the newly generated classes of
each variant. Any inconsistency in the composed code, such as a missing declara-
tion when its access has been introduced by the selection of features, is found in
the fourth step of FeatureJ type analysis. The error checking in FeaturelJ is not
restricted to finding access and declaration inconsistencies. JastAdd implements
semantic error checking by calling the nameCheck(), typeCheck(), accessCon-
trol(), exceptionHandling(), checkUnreachableStmt(), definite Assignment(), and
checkModifiers() methods in that sequence on each AST node and its children
starting with the Program node that represents the complete Java program in-
cluding any class(es), interface(s), and packag(es) along with imported types in
Java’s default packages and any included jar files. We extend this mechanism to

27

bind error messages on specific AST nodes to the features that contain them. Any
semantic error found in any of the above mentioned analyses, such as a wrong
entity name introduced by a feature, wrong type for an entity in a statement
contained in a feature, wrong access for any entity contained within a feature,
as well any semantic errors related to exceptions, unreachable statements, unas-
signed variables, and modifiers related errors are found in type checking the
variants. This analysis also takes into account the variant definitions in the Fea-
tureJ program, so that FeatureJ is able to report variant specific error messages.
This means that if a feature contains a semantic error but is not included in the
definition of variant A, then error messages, if any, pertaining to the variant A
will not contain this error. On the contrary, if a variant is defined to contain
this feature then the error message is included in the error reporting for this
variant. This analysis is invoked when a variant type in FeatureJ is bound to
a PLVariant type, i.e, when composing a variant as well as when a variant is
modified by adding or removing features.

Support for Static type analysis in FeatureJ

As shown in Figure 5, the default composition and modification of the FeatureJ
types takes place at runtime. Consequently, the name and type analysis for the
FeatureJ types is delayed until runtime in the default case. Using the command
line option for the compile time error reporting, the type analysis of FeatureJ can
be carried out statically at the compile time. This means that the entire sequence
of 1) FeatureJ name resolution, 2) structural validation of variant types, 3)
constraint resolution per variant type(s), 4) validation of the bindings of FeatureJ
types to meta-classes, and 5) exact error reporting is carried out at compile
time before executing the application main shown in Figure 5. If FeatureJ finds
any errors, syntactic or semantic, it reports the errors and halts the process of
compilation without executing the application main.

7 Discussion

In Sections 5 and 6, we have presented how features are represented and com-
posed in FeatureJ. Here, we lay out the differences between other feature ap-
proaches and FeatureJ in terms of feature representation and feature composition
and state the main advantages of Featurel.

7.1 Differences With Other Feature Approaches

FeatureJ differs from the other feature approaches in terms of nature of features
and consequently the possibilities of features as a modularity mechanism of its
own right as enlisted below:

28

Preprocessors and annotations FeatureJ attempts to obtain the maximum
possible abstraction for features and related concepts by elevating them to first-
class status in Java. On the contrary, preprocessing approaches do not have any
special representation for either of the conceptual and concrete features. The
feature containments in Feature]J are not simple annotations. This and other
differences are enlisted in the following:

1. Unlike the preprocessors, FeatureJ contains a sophisticated representation of
the feature abstraction. Features in FeatureJ are not merely pieces of code
that are pre-processed for addition to a specific variant. Since preprocessors
have no representation for features, variants, or product lines, it is extremely
difficult to associate any type-checking for features thus implemented [28,39].

2. FeatureJ is not susceptible to syntax, type or behavioral errors like the pre-
processor mechanisms because of its representation of features and their
composition as an integral extension of the syntax and semantics of the host
language Java.

3. Code laced with pre-processors directives gets obfuscated [28]. Similarly,
multiple color annotations make it difficult to discern the code belonging to
the same and different features. By extending the syntax of Java entities,
FeatureJ makes the feature containments more readable than either of the
pre-processors or annotations. The feature containments look like any block
statements in Java.

4. Unlike pre-processors as well as annotations, features in FeatureJ are reusable.
The features declared in a productline type are defined once in the code in
terms of feature containments, and then reused in several variant definitions
as required.

Concern-specific modularization mechanisms FeatureJ contains different
units of modularization represented in terms of productline, variant, and fea-
ture types. As opposed to using concern-specific modularization mechanisms to
represent features, FeatureJ represents features natively in Java. In this respect,
FeatureJ differs from these approaches as follows:

1. With FeatureJ, features themselves are the modularization mechanism used
to implement features. This way only one additional level of abstraction
needs to be addressed (cf. Section 3.2.2). Developers need a small learning
curve to implement features using FeaturelJ.

2. Features in FeatureJ do not loose legibility as no other concern-specific mod-
ularization mechanisms are used to implement features. The feature contain-
ments are minimally intrusive. Unlike the feature approaches using concern-
specific modularization mechanisms such as teams [23], or units and atoms
[31], feature related code fragments are not required to be specially packaged
in various modular entities. This also makes FeatureJ better when evolving
the product lines by adding new features or modifying the containments of
previously existing features.

3. Since FeaturelJ concentrates on providing only the feature related capabilities
[29], the semantics of features in FeatureJ is not convoluted (cf. Section

29

3.3.2). Its expressive power can be extended as required to address advances
in feature-oriented programming and feature models.

As opposed to concern-specific modularization mechanisms in which express-
ing the relationship between the conceptual and concrete features is a non-
trivial task [16,31,33], FeatureJ provides an intuitive way to address this
relationship. Since both the conceptual and concrete features are the same
entities no extra work is required to represent the relationship between the
two in Featured.

Unlike the concern-specific modularization mechanisms in which once fea-
tures are composed they can not be traced back to how they were composed
[10,31] (such as the aspects or teams that were used to compose the features),
FeatureJ retains the identity of features, enabling the developer to process
features, variants, and productlines even after they have been composed.

Structural forms of feature representation The main difference between
the feature approaches using structural forms of feature representation and Fea-
tureJ is that features are not represented external to the SPL classes. FeatureJ
differs from structural feature approaches in the following ways:

1.

Whereas features in approaches such as AHEAD and FeatureC++ are re-
finements [4,7], in FeatureJ they are modular entities of their own right.

. FeatureJ does not arrange feature related code in folder hierarchies. The

code fragments belonging to features are indicated in place by feature con-
tainments.

Whereas order of composition of refinements to classes is of vital importance
to these approaches [2,7,41], in FeatureJ no ordering of features is required
since code fragments belonging to features are contained in place. A devel-
oper needs to be aware of the specifics of code fragments, especially when
adding refinements to methods, to specify correct ordering in the equation
file. On the contrary, a variant type definition in FeatureJ does not require
any assumption about the ordering of selected features [41].

As opposed to an equation file in AHEAD, which represents composition
specification in terms of textual entries without any semantics associated
with them, FeatureJ contains a native and type-checkable representation of
the conceptual features.

Product lines, variants, and features are not addressable in these approaches,
as they are in FeatureJ in terms of programmatic entities. In FeatureJ the
representation of conceptual and concrete features is semantically strong
enough to enable processing multiple product lines and variants at both
compile time and runtime.

Language representation for conceptual features FeatureJ differs from
FDL and VML by the fact that both the conceptual and concrete features are
represented at language level. In the following we enlist the differences with these
approaches:

1.

In FeatureJ both the conceptual and concrete features are integrated in the
host language Java with a common semantics.

30

2. Unlike these approaches, features are not composed using code generators
via UML mappings [16,33]. The composition process is part of the compiler
that also contains the common syntax for productlines, variants, and fea-
tures. This enables a more coherent composition mechanism that is easy to
extend and does not depend on either additional UML representations or
code generator specific idiosyncrasies.

3. Whereas FDL represents an external DSL, the representation of features in
FeatureJ is implemented as a Java extension.This enables FeatureJ to also
compose features a part of the compilation process instead of making use of
code generators.

7.2 Advantages of FeaturelJ

Our goal in creating FeatureJ was to realize a holistic feature approach in which
the representation and the composition mechanism of feature related concepts
is strong enough to support various possibilities related to features. A first-class
representation in FeatureJ essentially set ups the background upon which various
capabilities of features are effectively realized. In the following, we enlist the most
important advantages of FeaturelJ:

1. Type support for features - FeatureJ provides common representation
and stream-lined composition for the conceptual and concrete features in
terms of types. This enables FeatureJ to provide 1) implicit type-checking of
variants and 2) the ability to address and manipulate multiple product lines
and multiple variants in a single program.

2. Error reporting and traceability - Features in FeatureJ retain their iden-
tity even after composition. This enables FeatureJ to support exact error
reporting not only at the compile time (static type checking) but also at
the runtime (to report errors in a variant that is composed or modified at
runtime).

3. Extensibility - FeatureJ compiler is based upon JastAdd, an extensible
compiler architecture. FeatureJ’s design is well structured so that its syntax
can be easily extended to support the granularity of features to coarser or
finer levels as required. Similarly, FeatureJ’s semantics can be extended to
keep up with advances in feature modeling concepts such as e.g., feature
attributes and cardinalities.

As described in Sections 3.2, 3.3, and 7.1, FeatureJ reduces the complexity of
implementing an SPL as compared to other feature approaches at the same time
providing an intuitive way to program product lines, variants, and features.
The feature containments in FeatureJ provide readability and maintainability
for relating code fragments in SPL classes to specific features. The ease with
which multiple product lines and multiple variant can be created, modified, and
queried increases the usability of Featurel.

31

8 Conclusion and Further Work

We have applied FeatureJ to various product lines such as the GPL, the EPL,
and the NPL'2. These and other product lines are used as testbeds for testing
various functionalities provided by FeatureJ. FeatureJ completely removes the
need for mapping the conceptual features to the concrete features, because both
are represented by the same entities, i.e. FeaturelJ types. Furthermore,the feature
composition is part of FeatureJ compilation (including name and type analysis).
Thus, we achieve our goal to create a uniform representation and a coherent
composition of features.

Extending FeaturelJ

FeatureJ is highly extensible due to its implementation as an extension of Jas-
tAdd. Although FeatureJ can be extended in a variety of ways, we discuss only
two extensions, one to the representation of features in FeatureJ and the other
to the composition of features in FeaturelJ.

Ezxtending the representation of features Since FeatureJ integrates the con-
ceptual and concrete features into a uniform representation, advances in feature
modeling can be implemented as extensions to the FeatureJ syntax and seman-
tics. Czarnecki et al. [12,13] suggested a number of extensions to the original
feature modeling concepts, such as staged configuration, cardinality based fea-
tures (where mandatory and optional features are special cases), feature groups
(alternative features, inclusive-or features etc.), attributes (type association of
features), modularization, etc. With FeatureJ this translate into extensions to
the syntax of FeatureJ types (such as feature cardinality and feature groups)
and semantics of the FeatureJ types (such as attributes - FeatureJ types provide
a unique opportunity for FeatureJ to Java type association). Modularization
of feature models mean models with leaves that are themselves other feature
models. This suggests composition of multiple productline types. We intend to
explore such feature modeling extensions to Featurel.

Extending the composition of features One of the most important avenues
of further development in FeatureJ is to carry out validation of all the variants
of a given product line. As discussed in Section 6.3, currently FeatureJ supports
semantically checking an individual variant that is defined as a wvariant type,
and bound to a PLVariant object. Many researchers have suggested approaches
for the safe composition of an entire product line [15,27,41]. These approaches
are either formal, or supported through separate tools. A natural extension of
the type semantics in FeatureJ would be to integrate safe composition of all
the possible variants of a productline type. Gheyi et al. [19] have suggested an
approach in which feature models are represented in the alloy language. The
alloy analyzer is used to 1) checking a configuration (variant) against a feature

12 http:/ /firstclassfeatures.org/index.php?n=Examples.FeatureJ

32

model (similar to functionality currently provided by FeatureJ) and 2) find all
configurations (i.e., checking all variants of a product line). The unified rep-
resentation of features in FeatureJ provide a unique opportunity to integrate
alloy transformations of FeatureJ types along with reified information available
in FeatureJ meta-classes. The information about entity declaration and entity
accesses/references is central to JastAdd’s analyses and also the basis of name
resolution and type analysis in FeatureJ. FeatureJ already provides information
about access and declarations of various entities in a particular feature'®. Apart
from the feature relations, implicit, and explicit constraints specified in [19], the
dependencies between features (e.g., feature A requires feature B because feature
A contains a method call of a method defined in feature B, called verification
properties in [41] which are essentially the required declarations for given access-
es/references) can be included as additional constraints in alloy model checking.
The Feature] type declarations can be easily transformed to alloy declarative
models (e.g., alloy models of features as discussed in [19]). We intend to imple-
ment and test safe composition capabilities of FeatureJ against different product
lines.

ACKNOWLEDGMENT

We thank Sven Apel and Christian Késtner for their valuable comments on an
earlier draft of this paper. Sagar Sunkle is a PhD candidate at the Database
group of Otto-von-Guericke University of Magdeburg and receives scholarship
from the federal state of Saxony-Anhalt in Germany. Sebastian Giinther works
with the Very Large Business Applications lab of Otto-von-Guericke University
of Magdeburg. The Very Large Business Applications Lab is supported by SAP
AG.

References

1. S. Apel and C. Késtner. An overview of feature-oriented software development.
Journal of Object Technology (JOT), 8(5):49-84, July/August 2009. Guest Col-
umn.

2. S. Apel, C. Késtner, A. Gréfllinger, and C. Lengauer. Type-safe feature-oriented
product lines. Technical Report MIP-0909, Department of Informatics and Math-
ematics, University of Passau, 2009.

3. S. Apel, C. Késtner, and C. Lengauer. FEATUREHOUSE: Language-independent,
automated software composition. In Proceedings of the 2009 IEEE 31st Interna-
tional Conference on Software Engineering- Volume 00, pages 221-231. IEEE Com-
puter Society Washington, DC, USA, 2009.

4. S. Apel, T. Leich, M. Rosenmiiller, and G. Saake. FeatureC++: On the Symbiosis
of Feature-Oriented and Aspect-Oriented Programming. In Proceedings of the In-
ternational Conference on Generative Programming and Component Engineering,
pages 125-140. Springer, 2005.

13 See the graph product line example -
http://firstclassfeatures.org/index.php?n=FeatureJ.GraphPL

33

10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

21.

22.

23.

S. Apel, T. Leich, and G. Saake. Aspectual feature modules. IEEE Transactions
on Software Engineering, 34(2):162-180, 2008.

S. Apel and C. Lengauer. Superimposition: A Language-Independent Approach to
Software Composition. In Software Composition: 7th International Symposium, SC
2008, Budapest, Hungary, March 29-30, 2008. Proceedings, pages 4—19. Springer-
Verlag New York Inc, 2008.

D. Batory. Feature-Oriented Programming and the AHEAD Tool Suite. In Pro-
ceedings of the 26 th International Conference on Software Engineering. ACM,
2004.

D. Batory. Feature Models, Grammars, and Propositional Formulas. In Proceedings
of the International Software Product Line Conference, volume 3714 of Lecture
Notes in Computer Science, pages 7-20. Springer, 2005.

D. Batory, J. Liu, and J. Sarvela. Refinements and multi-dimensional separation
of concerns. ACM SIGSOFT Software Engineering Notes, 28(5):48-57, 2003.

R. Chitchyan, I. Sommerville, and A. Rashid. A Model for Dynamic Hyperspaces.
In Workshop on Software engineering Properties of Languages for Aspect Tech-
nologies: SPLAT (held with AOSD, 2003.

K. Czarnecki and U. Eisenecker. Generative Programming: Methods, Tools, and
Applications. Addison-Wesley, 2000.

K. Czarnecki, S. Helsen, and U. W. Eisenecker. Formalizing cardinality-based fea-
ture models and their specialization. Software Process: Improvement and Practice,
10(1):7-29, 2005.

K. Czarnecki, S. Helsen, and U. W. Eisenecker. Staged configuration through
specialization and multilevel configuration of feature models. Software Process:
Improvement and Practice, 10(2):143-169, 2005.

M. de Jonge and J. Visser. Grammars as feature diagrams. Apr. 2002. draft.

B. Delaware, W. Cook, and D. Batory. A machine-checked model of safe com-
position. In Proceedings of the 2009 workshop on Foundations of aspect-oriented
languages, pages 31-35. ACM New York, NY, USA, 2009.

A. v. Deursen and P. Klint. Domain-specific language design requires feature
descriptions. Journal of Computing and Information Technology, 10(1):1-17, 2002.
S. Ducasse, O. Nierstrasz, N. Schérli, R. Wuyts, and A. Black. Traits: A Mecha-
nism for Fine-Grained Reuse. ACM Transactions on Programming Languages and
Systems, 28(2):331-388, 2006.

T. Ekman and G. Hedin. The JastAdd system - modular extensible compiler
construction. Science of Computer Programming, 69(1-3):14-26, 2007.

R. Gheyi, T. Massoni, and P. Borba. A theory for feature models in alloy. In First
Alloy Workshop, pages 71-80, 2006.

S. Giinther and S. Sunkle. Enabling feature-oriented programming in ruby. Tech-
nical Report FIN-017-2009, Very Large Business Application Lab, University of
Magdeburg, Germany, Nov. 2009.

S. Giinther and S. Sunkle. Feature-oriented programming with ruby. In Proceedings
of the First Workshop on Feature-Oriented Software Development (FOSD). ACM
Press, OCT 2009.

G. Hedin and E. Magnusson. Jastadd: an aspect-oriented compiler construction
system. Sci. Comput. Program., 47(1):37-58, 2003.

C. Hundt, K. Mehner, C. Pfeiffer, and D. Sokenou. Improving Alignment of Cross-
cutting Features with Code in Product Line Engineering. Journal of Object Tech-
nology (JOT)-Special Issue: TOOLS EUROPE, 6(9):417-436, 2007.

34

24

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

C. Kaewkasi and J. Gurd. Groovy AOP: a dynamic AOP system for a JVM-based
language. In Proceedings of the 2008 AOSD workshop on Software engineering
properties of languages and aspect technologies, page 3. ACM, 2008.

K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson. Feature-Oriented Do-
main Analysis (FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-21,
Software Engineering Institute, Carnegie Mellon University, 1990.

C. Kastner and S. Apel. Integrating compositional and annotative approaches
for product line engineering. In Proceedings of the GPCE Workshop on Modu-
larization, Composition and Generative Techniques for Product Line Engineering
(McGPLE), number MIP-0802, pages 35—40. Department of Informatics and Math-
ematics, University of Passau, Oct. 2008.

C. Késtner and S. Apel. Type-checking software product lines - a formal approach.
In Proceedings of the International Conference on Automated Software Engineer-
ing. IEEE Computer Society, 2008.

C. Késtner and S. Apel. Virtual separation of concerns — a second chance for
preprocessors. Journal of Object Technology (JOT), 8(6):59-78, Sept. 2009.

C. Késtner, S. Apel, and D. Batory. A Case Study Implementing Features Using
Aspect]J. In Proceedings of the International Software Product Line Conference,
pages 223-232. IEEE Computer Society, 2007.

C. H. P. Kim and K. Czarnecki. Synchronizing Cardinality-Based Feature Models
and Their Specializations. In Furopean Conference on Model Driven Architecture
Foundations and Applications, pages 331-348. Springer, 2005.

R. Lopez-Herrejon, D. Batory, and W. R. Cook. Evaluating Support for Features
in Advanced Modularization Technologies. In Proceedings of the European Confer-
ence on Object-Oriented Programming, volume 3586 of Lecture Notes in Computer
Science, pages 169-194. Springer, 2005.

R. E. Lopez-Herrejon. The expression problem as product-line and its implemen-
tation in AHEAD. Technical report, Department of Computer Sciences, University
of Texas at Austin, October 2004.

N. Loughran, P. Sdnchez, A. Garcia, and L. Fuentes. Language support for man-
aging variability in architectural models. In Software Composition, pages 36-51,
2008.

S. McDirmid, M. Flatt, and W. C. Hsieh. Jiazzi: New-Age Components for Old-
Fashioned Java. In Proceedings of the International Conference on Object-Oriented
Programming, Systems, Languages, and Applications, pages 211-222. ACM Press,
2001.

M. Mezini and K. Ostermann. Variability Management with Feature-Oriented
Programming and Aspects. In Proceedings of the International Symposium on
Foundations of Software Engineering, pages 127-136. ACM Press, 2004.

H. Ossher and P. L. Tarr. Hyper/j: multi-dimensional separation of concerns for
java. In ICSE, pages 734-737, 2000.

C. Prehofer. Feature-Oriented Programming: A Fresh Look at Objects. In Proceed-
ings of the European Conference on Object-Oriented Programming, volume 1241 of
Lecture Notes in Computer Science, pages 419-443. Springer, 1997.

M. Rosenmiiller, N. Siegmund, G. Saake, and S. Apel. Code Generation to Sup-
port Static and Dynamic Composition of Software Product Lines. In Proceedings
of the 7th International Conference on Generative Programming and Component
Engineering. ACM Press, Oct. 2008.

O. Spinczyk and D. Beuche. Modeling and building software product lines with
eclipse. In OOPSLA °04: Companion to the 19th annual ACM SIGPLAN confer-

35

40.

41.

ence on Object-oriented programming systems, languages, and applications, pages
18-19, New York, NY, USA, 2004. ACM.

S. Sunkle, M. Rosenmiiller, N. Siegmund, S. S. ur Rahman, and G. Saake. Fea-
tures as First-class Entities — Toward a Better Representation of Features. In
GPCE Workshop on Modularization, Composition and Generative Techniques for
Product Line Engineering (McGPLE), pages 27-34. Department of Informatics and
Mathematics, University of Passau, Oct. 2008.

S. Thaker, D. Batory, D. Kitchin, and W. Cook. Safe composition of product lines.
In Proceedings of the 6th international conference on Generative programming and
component engineering, pages 95-104. ACM, 2007.

36

