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Enabling Feature-Oriented Programming in
Ruby

Sebastian Giinther, Sagar Sunkle

Faculty of Computer Science, University of Magdeburg
sebastian.guenther@ovgu.de, sagar.sunkle@ovgu.de

Abstract. Feature-oriented programming (FOP), captures requirements
and functionality of software at a higher level of abstraction. Modular
software can be built using features which are both conceptual entities in
the analysis phase and concrete entities in the design and implementation
phases of software development. Most research in FOP addresses static
languages like Java and C++. In this paper, we describe FOP in the con-
text of the dynamic programming language Ruby. Ruby is a dynamic lan-
guage featuring a fully object-oriented implementation and rich metapro-
gramming facilities. Developers can manipulate the program behavior to
a large extent, which gives flexibility in designing software. In order to
implement features, three programming mechanisms can be identified:
Basic expressions (object-oriented mechanisms), metaprogramming and
reflection (runtime modifications of variables and methods), and holistic
manipulations (treating the program as a string). We discuss and com-
pare these mechanisms for their ability to satisfy the four central feature
properties namely, naming, identification, expressing, and composition.
Furthermore, we sketch two implementations of FOP in Ruby. The first
implementation uses annotations in the form of comments to express
feature-related code. The second implementation one is a DSL which
adds features as types to the Ruby language.



1 Introduction

Software development is a complex task. In today’s applications, development
dimensions like multiple requirements, domains, technologies, and paradigms
must be combined. If those dimensions are tightly coupled, several software
defects can emerge, such as tangled and bloated code [11], complex function
call hierarchy, and a cluttered design. One of the many solutions to this problem
is feature-oriented programming (FOP) [18].

Features are characteristics of software used to distinguish members of a
program family [2]. Concerns describe the general requirements of the software’s
stakeholder [9] or advances in functionality [10]. Features can be seen from two
viewpoints. In the analysis phase of a software, conceptual features represent
a concern that the software incorporates. In design and implementation of the
software, the conceptual features are realized as concrete features. A concrete
feature is the sum of all changes which need to be applied to the base program
in order to achieve new functionality. Different approaches exist, like mixin-layers
[19], AHEAD [2], and aspectual feature modules [1].

Current FOP implementation approaches have a number of problems as doc-
umented in [16, 10,21]. Our motivation is to design a new implementation which
helps to remedy these problems. As most of the research in feature implemen-
tation uses static languages like Java and C++, a natural step is to take a look
into dynamic languages. The goal of this report is to structure, explain, discuss,
and evaluate how FOP can be achieved in a dynamic language. The target lan-
guage is Ruby, which is chosen for its fully object-oriented character, its dynamic
nature, and the rich metaprogramming facilities it offers.

Our understanding of FOP is that of a paradigm realized with an implemen-
tation which adds types for features to a target language. In this way, features
become first-class entities of a host langauge [20,21]. The first step is to define
the properties that such an implementation should possess. We define following
properties as derived from [15]:

— Naming The conceptual features are means to abstract the core function-
ality of a program. In the analysis phase of software development, these
conceptual features are given a unique name and intent. Continuing with
the specification and design, the name of the concrete feature should be
the same as of its conceptual feature, while the intent is expressed with the
identification and composition properties.

— Identification The identification property is understood as the task to iden-
tify the parts of a program which belong to a feature. Two kinds of granu-
larity have to be considered [10]. Coarse-grained features can be thought of
as stand-alone parts of the program - they cleanly integrate with the base
program via defined interfaces or by adding new classes. On the contrary,
fine-grained features impact various parts of the source code: extending code
lines around existing blocks of code, changing parameters of methods, or
adding single variables at arbitrary places.



— Ezxpressing The identified parts now have to be expressed. In principal,
feature related code can be expressed in an external form to the program,
like configuration files, or internally in the program using extended custom
syntax.

— Composition Finally, composition is the task which combines the base
program with the feature-related code to a coherent and valid form. Of
interest are the principal composition mechanism used in a given feature
implementation technique and the order in which features are composed.

These properties are central to the proposed implementation approach. Thus,
a feature implementations need to name, identify and express features and the
code-parts they have in a program, followed by a flexible composition mechanism
which combines a base program with the features for a valid and compilable/in-
terpretable variant.

In order to build such an implementation, we spilt our research into two parts.
The first one explains the principal composition mechanisms which developers
can use with Ruby. We will see how Ruby’s basic expression, reflection and
metaprogramming, and holistic manipulations helps with the implementation.
Building upon this knowledge, the next part explains two basic implementations:
one with annotations, and one as a Domain-Specific Language. Each part will
discuss in detail how the mentioned properties are supported.

2 Ruby Basics

The Ruby programming language was invented in the year 1994. Originating in
the context of Unix, it was used as a scripting language for system programming.
Libraries for HT'TP, FTP, database and graphical user interfaces were added over
time. The most important boost to Ruby’s popularity came with the introduc-
tion of the Rails framework in the year 2004. Rails is one of the most modern
frameworks for designing web applications. The easy syntax of Ruby, combined
with a set of useful conventions, led to applications that were extremely fast
to develop and easy to maintain. Today, Ruby and Rails are becoming serious
alternatives to older languages like Java, C++ and the .NET framework.

This section presents Ruby’s class model, object creation, language internals,
and program decomposition. It is not the task of this report to fully introduce
the Ruby programming language, but to explain the most important concepts
directly used in achieving FOP. Both [5] and [22] are used as references for the
next sections.

Starting from here, we will uniformly assign the following formatting: key-
words, Ruby expressions and objects and FEATURES.

2.1 Core Objects

The most important objects in Ruby which define the overall semantics of any
program are Proc, Method, Class and Module:



— Proc Procs are very versatile objects in Ruby. They can be referenced by a
name or created anonymously e.g. in the context of method invocations as
an additional argument. When defined, Procs can either reference variables
of their surrounding scope, working as closures, or reference variables which
yet have to be defined. Further more, they can receive arbitrary number of
arguments.

— Method Methods consist of the methods name, a set of (optional) parame-
ters (which can have default values), and a body. Methods are defined inside
modules and classes. A method is either a instance method of a instance
object, or a class method of a Class or Module. Inside classes, methods can
have a different visibility, like private or protected.

— Class A Class defined with the notation class Name; ...; end. A class con-
sists of its name and its body. Each class definition creates an object of
class Class. New objects of classes, called instances are created with the new
keyword. Classes can have different relationships. First, they can form a hi-
erarchy of related classes via single sub-classing, inheriting all methods of
their parents. Second, they can mix-in arbitrary other modules, leading to a
“multi sub-classing”.

— Module A Module is defined with the notation module Name; ...; end.
Modules have the same structure as classes. Class methods in modules can
be called on the module, but its instance method can only be used if a
class mixes-in the module. Modules can’t have subclassing-like inheritance
relationships.

2.2 Class Model

The fact that everything inside the Ruby language is a true object is best ex-
plained with the class model. An example is shown in »Figure 1.
We first explain the relationships inside this diagram:

— Inheritance Objects can inherit from other classes, gaining access to their
methods. Parent classes are called superclasses in Ruby.

— Singleton Each objects has a so-called singleton class. The singleton class
holds the instance and class methods for their corresponding object. Each
singleton class is private to its object. Singleton classes are used fairly often
to customize specific objects for a specific purpose.

— Mixin Relationship between modules providing their methods to other ob-
jects.

— Instance are basic in-memory constructs that just contain a value and a
pointer to the class of which they are an object off. Although they appear as
having all properties and methods defined, their real implementation is the
class they belong to.

Let’s explain further details about »Figure 1. The String object called hello
is an instance which just contains the value “hello” of the string, and a pointer
to its class. The class String defines the typical methods to create and modify
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Fig. 1: Ruby’s class model

string objects. Whenever a method is called on an instance object, the methods
of the class are actually executed. By providing the SingletonString, we can
change the basic behavior of all string objects. For example, we could store a
timestamp-variable with each instance to record its creation time. Going up
the ladder, String itself is a Class object. Class contains the essential new and
initialize methods which are needed to create new instance objects. That is
to say, when the string ”hello” is created, the initialize method of the Class
object named String is executed.

At the class models top are Object and Module. Module defines the majority
of methods concerning properties of methods themselves (like visibility), and a
number of metaprogramming methods (like hooks for adding methods to ob-
jects). Object is the superclass of all Ruby objects, and at the same time a Class
object itself'. It includes methods for freezing and copying any objects. These
methods however are not part of Object, but belong to the Kernel module, which

! This explains the Ruby “Koan” Class.is_a?(Object)&& Object.is_a?(Class).



is mixed-into Object. Finally, the new Ruby version 1.9 added BasicObject as an
ancestor for objects which only need a minimal amount of methods.

The refined terminology helps in understanding what the core of Ruby is -
flexible objects with a details hierarchy, which can be extended and modified at
runtime.

2.3 Type System

Ruby does not have a static type hierarchy for its classes and objects. Ruby
objects are identified according to the methods they provide. An object of any
class can be used in all contexts as long as it responds to the required method
calls. In the Ruby community, this is called “duck typing”: “If an object walks
like a duck and talks like a duck, then the interpreter is happy to treat it as if
it were a duck”[22].

Although this may seem unorthodox to the developers used to working with
typed languages, there are a number of benefits. First of all, the amount of code
is reduced. Second, what kind of object is actually used in an expression can be
changed at runtime as long as the new object responds to the required methods.
And third, new objects can be added anytime to the program. On the downside,
this requires some programming discipline by using consistent objects within the
program, but the advantages exceed the disadvantages.

3 Graph Product Line

Since explaining a programming language without programs is futile, we intro-
duce the Graph Product Line as the running example for all following code
listings. The Graph Product Line (GPL) describes a family of related applica-
tion in the domain of graphs. It is often used in the context of FOP as a case
study for implementation [14]. We see a graphical representation of the features,
their relationships in »Figure 2.

The root node is GPL, representing the graph product line itself. It is fol-
lowed by four mandatory features: TYPE, WEIGHT, ALGORITHMS and SEARCH.
The TYPE specifies whether the graph is DIRECTED or UNDIRECTED, and
WEIGHT whether the graph is WEIGHTED or UNWEIGHTED. These properties
are exclusive: A graph can’t be DIRECTED and UNDIRECTED at the same time.
The next feature is ALGORITHMS: NUMBER traverses the tree and assigns unique
numbers to the nodes, CYCLE calculates if cycles are included inside the graph,
and SHORTEST computes the shortest path from a given source node to others.
All these features are optional. And finally, the SEARCH is either BF'S (breadth-
first search), DFS (depth-first search), or NONE.

A efficient implementation of the graph algorithms would use matrices. While
this is the implementation to choose for building libraries, in the context of a
study about FOP, it was suggested to use the natural domain entities in the
program [14]. This means to implement classes like Node, Edge and Graph as
classes.
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Fig.2: The Graph Product Line

4 Programming Mechanisms

Ruby has a rich set of overlapping programming mechanisms. When we studied
them, the various mechanisms formed a natural order according to their power
to reference and change parts of a program. In total, three mechanisms were
identified. The basic expressions are mechanisms stemming from the object-
oriented paradigm and Ruby’s dynamic nature. At the next level, reflection and
metaprogramming allow finer ways to select parts of the program and modify
it. Finally, the holistic manipulations allow selecting and modifying arbitrary
pieces of code by treating the whole program as a string. Each mechanism is
presented thoroughly in the following subsections. The focus thereby is how to
select and manipulate the aforementioned building blocks of a Ruby program:
Procs, Methods, Classes, and Modules.

4.1 Basic Expressions

This section discusses four basic mechanisms helping in archiving the feature
properties: Method objects, subclassing, miz-in, reopening.

4.1.1 Method Objects Proc is one of the most versatile objects in Ruby.
Procs allows storing arbitrary code and executing it in another scope. Methods
are closely related to Procs - the only difference is that methods have a defined
place where they are valid. While Method objects can be called immediately,
UnboundMethod need a so-called binding object which is of the same class as the
object the original method was defined in. The interesting feature of any Method
object is that it can be handled and called like a Proc object.



We show an example for working with Method objects. In »Figure 3, line 1,
the programmer stores the method to Node#set_weight?. We can see that the
result is a Method object in line 2. Finally, we use call in line 3 to execute the
method and pass an argument. The same syntax would also apply to Procs.

1| meth_body = Node.method :set_weight
2| meth_body.inspect

3]=> "#<Method: Node#set_weight>"
4'meth_body.call 3

5l => n3n

Fig. 3: Creating and using a Method object

Some example use-cases for methods are to export functionality to another
object and to call the method in a free context.

4.1.2 Subclassing A classic method of object-oriented programming is to
define a parent class which includes core methods, and let child classes inherit
the same functionality. The subclasses can add or overwrite methods for specific
purposes. In »Figure 4 we see how to first define a BasicNode class (line line 1
to 8) which is then subclassed by NeighborNode in line 10. Line 14, attr_reader,
is a meta-method to define read access on instance variables.

class BasicNode
def initialize source, sink, weight , directed
@source = source
@sink = sink
@weight = weight
@directed = directed
end
]end

© 00~ U= W~

10| class NeighborNode < BasicNode
11 def add_neighbor (node)

12 @neighbor << node
13 end

14 attr_reader :neighbor
15| end

Fig. 4: Using subclassing to combine the code of a BasicNode with NeighborNode

Subclasses preserve the scope of constants, variables and method visibility for
their children. They are a natural vehicle for sharing functionality. Furthermore,

2 We apply the following notation: Node#set_weight is a instance method, and
Node.set_weight is a class method.



the subclassing mechanism can be used to mirror the structure of the domain
they reflect.

4.1.3 Mix-In The third mechanism in the basic expressions is to use modules
and the mix-in functionality. Modules can define inaccessible instance methods
using the normal def name ... end notation. These instance methods can be
called by either modules or classes using two mix-in operators. With extend, a
module adds its instance methods as class methods to the calling module or
class. And include, called on a class, makes the modules instance method as the
classes’ instance methods available.

In »Figure 5, we define the Neighbor module (line 1) which contains the
add_method (line 2) and attr_reader (line 5) as before. By using the include
statement in line 9, Node now contains Neighbor’s methods.

module Neighbor
def add_neighbor (node)
@neighbor ||= []
@neighbor << node
end
attr_reader :neighbor
end

class Node
include Neighbor
end

HO©®ONo U WN -
— N

—

Fig. 5: Using a mixed-in module to compose the Node class

Modules provide a clean, namespace secured mechanism to share functional-
ity and constants with other modules and classes. Their independent definitions
makes them the premier vehicle when other classes and objects needs to include
several methods of different origin. As explained in the class model of section
2.2, objects mixing-in a module merely contain a pointer to that module. So it
is easy to update functionality in a central module, and have it ready in other
objects too.

4.1.4 Reopening Modules and classes are open objects. Their definitions can
be opened again anywhere in the course of a program. Typically, new methods
are introduced or existing ones are overwritten?.

In the following »Figure 6 we first see how the class Edge is defined to have
a basic initialization method (line 2). When implementing some algorithms
in the GPL, we see the need to store neighboring nodes as well. So, later in the

3 Ruby does not directly provide overloaded methods. However, using a hash with
named parameter, arbitrary length arguments are often realized. This is called named
parameters.



code, we open the definition again and add the add_neighbor method (line 11)
and a attr_reader (line 14) for the new neighbor instance variable. The combined
Edge class has a initialize method and the add_neighbor methods, plus the five
instance variables @source, @sink, @weight, @directed and @neighbor.

-
class Edge

1

2 def initialize source, sink, weight, directed
3 @source = source

4 @sink = sink

5 @weight = weight

6 @directed = directed
7 end

8}end

9 ...

10| class Edge

11 def add_neighbor (node)
12 @neighbor << node

13 end

14 attr_reader :neighbor
15| end

Fig. 6: Defining class Edge first with its initialize method, and later extending it with
a add_neighbor method

Ad-hoc reopening of objects to change their definition should be used care-
fully. The alternatives, subclassing and mix-in, provide a more consistent ap-
proach for expressing changes. Reopening is however often the only
non-metaprogramming option to access objects’ otherwise hidden information.
As any code is executed in the context of the object, it is possible to read e.g.
internal instance variables not accessible from the outside.

This completes the explanation of the basic expressions. We continue with
the explanation of the reflection and metaprogramming mechanisms of Ruby.

4.2 Reflection and Metaprogramming

Reflection and metaprogramming play a vital role in Ruby. Because they are
built into the language and are convenient to use, many Ruby programs, e.g.
open source applications, use these facilities. We draw a line between the two
closely related concepts: In Ruby, reflection methods return values naming Ruby
objects, and metaprogramming uses these identifiers to modify the objects. We
explain them separately. The material discussed here again stems from [5] and
[22)

Reflection is the ability to derive internal information about a program. In
Ruby, reflection methods allow convenient access to (i) methods for objects
grouped by their visibility (public, private, protected) and their type (class,
instance), (ii) global and instance variables, and (iii) constants. Table 1 shows
how Ruby’s core objects become addressable through the reflection methods.

10



Table 1: Ruby’s reflection methods

‘Object ‘Object Property ‘Applicable methods
ObjectSpace#each_object,
Class#superclass,
Module#class,
Name Module#nesting,
Module#ancestors,
Module#included_modules
Module/Class Object#protected_methods,
Object#public_methods,
X Object#private_methods,
Methods Module#public_instance_methods,
Module#private_instance_methods,
Module#protected_instance_methods
Class variables Module#class_variables
Instance variables Object#instance_variables
Body (Variables/Procs) (Kernel#local_variables)
Body (Other) -
Name (via Module/Class methods)
Method Parameters -
Body (Variables/Procs) (Kernel#local_variables)
Body (Other) -
Name -
Procs Parameters -
Body (Variables/Procs) (Kernel#local_variables)
Body (Other) -

We see that the modules, classes and methods can be addressed, but the
body internals are not visible. Only one method is applicable to derive some
information about the body - Kernel#local_variables - but this method is also
constrained because it can only be called inside the body and returns just names
of the variables, no pointers. Because the methods are straight-forward to use,
we restrain from giving a detailed explanation, and continue with explaining the
metaprogramming methods of Ruby.

Defining metaprogramming according to [23], Metaprogramming is the con-
cept that program synthesis is a computation.” Ruby provides sophisticated
metaprogramming methods, which allow the following;:

— Class and instance variables can be added and removed, as well as constants

— Methods can be added (instance and class method), copied or deleted

— Arbitrary code, executed in the context of its receiver, can be used to define
inner classes, change the visibility of methods and more (the various eval
methods).

Table 2 lists in detail the available methods and short descriptions.

We want to give an example how to use the metaprogramming methods for
extending functionality of a class. In »Figure 6, we explained how to extend
the Edge class with methods for setting the neighbor. We used the reopening
mechanism back then, and now show how to do the modification with metapro-
gramming.

In »Figure 7, we first define the method to be extended as a string (line 1
- 5) and as a proc (line 7-12). The actual extension is a simple method call: -
class_eval, called in line 17 and 18 with the string respective the proc.
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Table 2: Built-In metaprogramming methods

‘ Object ‘ Method ‘ Explanation
Module#const_set, e
Moduletremove_const Set and remove constants
Module#attr,
Module#attr_reader, Provide read, write or combined access to instance
Variables Module#attr_writer, variables
Module#attr_accessor
Object#instance_variable_set, . .
Objectremove_instance_variable Set and remove instance variables
Module#class_variable_set, . . . .
Module#remove._class_variable Set and remove class variables
Module#alias_method Copies method body to a newly named method
Module#define_method Defines new methods
Methods [Module#undef_method Prevents object to respond to calls of the method
Module#remove_method Deletes the method from module/object
BasicObject#instance_eval Evaluates string or block (defines class methods)
Arbitrary BasicObject #instance_exec Evaluates block with additional parameters (de-
fines class methods)
Module#module_eval, Evaluates string or block (defines instance meth-
Module#class_eval ods)

neighbor_string = "
def add_neighbor (node)
@neighbor << node
end
attr_reader :neighbor"
neighbor_proc = lambda do
def add_neighbor (node)
@neighbor << node
end
attr_reader
end

—
OO 00~ Uk W -

-
—

:neighbor

=
= W

class Node < BasicNode
15| end
16
17

18

Node.class_eval neighbor_string
Node.class_eval &neighbor_proc

Fig. 7: Extending class Node with string or proc object to add the add_neighbor method

Comparing reopening and metaprogramming shows that each provides sim-
ilar methods. At first, combining reflection and metaprogramming allows to use
runtime knowledge about dynamic created objects which become subject to mod-
ifications. With reopening or other basic expressions, the objects to be modified
must be known in advance. Second, reflection and metaprogramming use de-
fined keywords to clearly express their intent. Runtime changes are more concise
to express with this. In summary, developers should use basic expression for
pre-runtime modification, and metaprogramming for runtime modification.

But like the basic expressions, reflection and metaprogramming have one
weakness: Once evaluated, the body of modules, classes, methods and procs
become hard to extend - adding and overwriting are the only alternatives. Since

12



immutable bodies prohibit fine-grained features, other methods are still needed.
Here the holistic manipulations enter the field.

4.3 Holistic Manipulations

The internals of Ruby’s core objects can not be modified with basic expressions
or reflection and metaprogramming. This prevents implementing fine-granular
changes to the program. But there are two mechanisms that enable this: string
manipulation and abstract syntaz tree manipulation.

4.3.1 String Manipulation Ruby is basically implemented as text. Tech-
niques to identify patterns inside a text allow both coarse-grained and fine-
grained identification and modification of source code. A natural way of string
manipulation is to use regular expressions.

The Ruby class Regexp allows sophisticated and convenient methods for
working with regular expressions [22]. A regular expression, or “regexp” in the
Ruby jargon, is created with a specialized syntax. Patterns of strings and num-
bers form the background. Further options are patterns with character classes
(strings, numbers, whitespace), anchor (beginning or end of line), repetitions of
values, and the use of lookahead or lookbehind. With these patterns, selections
for (i) the name of the method, (ii) properties or appearance of the methods
parameters, (iii) properties of the methods body (variables, length, and specific
line), (iv) position of the method, and many more can be used. Each time a
match occurs, special variables for the exact match, the text before, and the
text after the match, are created. The match itself can be sub-grouped where
each group is available through the MatchData object.

In »Figure 8, we open the file “source.rb” and iterate over all text lines.
For each line, we check whether the line contains a method declaration at the
beginning (line 2). The regexp is defined in backslashes (\ ..\). The first part
is the def keyword which we are looking for. Followed by a space, the expression
\w+ states to select text characters which have at least one occurrence - which
is the methods name. If a match occurs, the global variable $1 contains the
methods name.

1| File.read ("source.rb") .each_line do |linel
2 if line =~ /def (\w+)/

3

4 end

5| end

Fig. 8: Regular Expression for matching method definitions

Regular expressions can be used to process the static structure of a Ruby
program - the source code prior to execution. Changes at runtime are expressible

13



if parts of the source code are evaluated again. Runtime modifications which
are not defined in static files, but e.g. happen through user interaction, can
be tracked with some effort. Here, the library Ruby2Ruby comes into play. At
runtime, arbitrary expressions, including modules and classes, are transformable
to a string representation. Consider »Figure 9 where we first transform the
neighbor_proc (line 1) of »Figure 7 and then the whole class definition for Node
(line 3).

1| Ruby2Ruby.translate neighbor_proc

2| >> "def add_neighbor (node)\n (@neighbor << node)\nend"

3l,Ruby2Ruby.translate Node

4[1>> "class Node < BasicNode\n def add_neighbor(node)\n
(@neighbor << node)\n end\n \n attr_reader
:neighbor\nend"

Fig. 9: Transforming a proc and the complete class definition of Node back to a string

Combining regular expressions with Ruby2Ruby allows for string manipu-
lations which target coarse-grained and fine-grained feature definitions even at
runtime.

4.3.2 Abstract Syntax Tree Manipulation In general, computer programs
are handled to a translator (compiler or interpreter). The translator scans the
input and creates a token list form it. Next step is to transform the token list to
an Abstract Syntax Tree (AST). Abstracting from the concrete source code, the
AST of a program captures the name, precise scope and semantics of any expres-
sions. Various checks are done to the AST, optimizations, and finally compilation
or interpretation. The AST is the immediate representation of a program which
is used for further processing and code execution. Manipulations of an AST mean
the manipulation of the program itself.

Ruby provides runtime modification ability for its own AST. With the help
of the library ParseTree, a nested array representing the AST can be shown
for any expression or in-memory objects accessible by reflection methods (like
classes and methods).

» Figure 10 shows the parse tree for the method definition of set_weight. In
line 2, the defn specifies a function definition whose name is followed in line 3.
The nested array starting at line 4 is rather complex. It defines a block of code
which receives a argument called weight. Then it is followed by an assignment
iasgn of the variable @weight to the value weight.

For understanding how modification to a program are done using AST ma-
nipulations, we resort to the mix-in example in 5. This time, the class Node
inherits from BasicNode which includes common node functionality.

»Figure 11 shows the parse tree for the class definition. Line 1 and 2 state
that the expression is a class with the name Node. The subclass relationship is

14



1| ParseTree.translate "def set_weight(weight); @weight = weight; end"
2| >> [:defn,
:set_weight,
} [:scope,
[:block,
[:args, :weightl, [:iasgn, :Qweight, [:lvar, :weight]]

~ O Ul W

111

Fig. 10: The parse tree for the set_weight method

defined on Line 3: Node has a reference to the constant BasicNode. On line 4 and
line 10, two methods are defined. The first is add_neighbor. It literally receives a
block with the arguments node, and then calls the method << with neighbor as
the left value and node as right value. On line 10, the attr_reader is translated
to the function call neighbor which returns the instance variable neighbor.

1| ParseTree.translate Node
2| >> [:class,
3 :Node,
4 [:const, :BasicNodel,
5 [:defn,
6] :add_neighbor,
7 [:scope,
8 [:block,
9 [:args, :nodel,
10 [:call, [:ivar, :@neighbor], :<<, [:array, [:1lvar, :nodel]l]l],
11 [:defn, :neighbor, [:ivar, :@neighbor]]]
= J

Fig. 11: Parse tree for the Node class

In »Figure 12, using the AST, we change the superclass of Node to the
AdvancedNode - this class contains a setter for the weight. We further add a
reader for the nodes weight directly in Node. In line 2, we select the appropriate
array position to change the superclass to the value :AdvancedNode. Then, we add
the method definition after the defined attr_reader for neighbor (line 4). Line
6 shows the back-translated string representing the modified node. To actually
apply this change, we need to call the class_eval metaprogramming method
introduced in section 4.2.

With holistic manipulations, we are finally able to access also fine-grained
modifications. The example showed the prototype for selecting and updating
the AST representation. Using this method in production code however would
require making the changes more convenient. We could encapsulate the method
calls, and build convenient methods which would apply semantic changes like
“update the superclass” or “add a new line to the method body”.
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tree = ParseTree.translate Node

tree[2][1] = :AdvancedNode

tree[5] << [:defn, :weight, [:ivar, :Q@weight]]

]Ruby2Ruby.translate_tree tree

5['>> "class Node < AdvancedNode\n def add_neighbor(node)\n

(@neighbor << node)\n end\n \n attr_reader :neighbor\n \n
attr_reader :weight\nend"

=W N =

Fig. 12: Manipulating the AST and convert it back to a class definition

4.4 Evaluating the Feature Properties

Having explained the available mechanisms for code manipulation in Ruby pro-
grams, we will now discuss how the mechanisms are applicable to develop an
implementation of FOP. The next sections will successively explain how the
namaing, identification, expressing, and composition properties of features are
achievable in Ruby. Each section will describe the general nature of the property
and then discuss the benefits and disadvantages of the mechanisms.

4.4.1 Naming Each feature needs to have a unique name which identifies it.
Ruby provides the two entities variables and constants [22].

— Variables are mutable objects with different scoping. Global variables are
seen from any scope. Instance and class variables are visible inside their
object respective their class, and local variables are only visible inside their
surrounding definition scope, like in the body of methods or procs.

— Constants are less mutable* objects with namespace scoping. Constants
defined within modules and classes are accessible unadorned within their
modules and (sub)classes. From the outside, they can be referenced by using
the name of the module and class plus the double colon : :. Constants defined
in the top level object are viewable without restrictions from each scope. All
modules, classes and their nesting furthermore declare constants as well.

Because of the scope, constants should be favored over variables. In principle,
every object of Ruby can provide the naming property. But what is the criteria
guiding this choice? We need to think about the further properties features will
have. Features may have a kind of status, such as they are activated or not
activated for a particular variant, and they may have behavior themselves. Both
modules and classes provide the needed mechanisms. Furthermore, they also
allow nesting definitions in each other to represent the hierarchy of a product
line. However, only after all other feature properties have been explained we can
assess which entities can be used for naming.

4 The object referenced by a constant can be changed as well as the referenced object
is changeable - but not within a method
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4.4.2 Identification After the features have been named, the next step is the
identification of the relevant part of the source code which belongs to a certain
feature. Following Table 3 shows how the programming mechanisms are viable
to identify parts of the program. We clearly see that only holistic manipulations
provide the means for fine-grained modifications of the source code. But do
we always need such fine-granular changes? If not, the built-in reflection and
metaprogramming facilities provide enough expressive power for the purpose of
identification.

Table 3: Applicability of identification methods to identify objects

Reflection e
Basic Ex-|and Holistic
Object Object Property R Manipula-
pressions |Metapro- .
. tions
gramming
Name v v v
Methods v v v
Class variables v v v
Module/Class [Instance variables |V v v
Body _ v
(Variable/Procs)
Body (Other) - - v
Name v v v
Method Parameters - v v
Body v v
(Variables/Procs) |
Body (Other) - - v
Name - v v
P Parameters - v v
roc
Body _ _ v
(Variables/Procs)
Body (Other) - - v

4.4.3 Expressing We know that basic expressions only have very limited
support to actually extend source code. If we developed an application in which
features are expressed entirely in terms of basic expressions, it would require
us to manually update and synchronize two infrastructures: The basic program
and the features. Feature combinations are problematic too: If they crosscut each
other, developers need to write the feature combination manually. This leads to
high maintenance effort for complex applications.

Reflection and Metaprogramming are more powerful. It is possible to add or
remove individual methods, which is more granular then the basic expression.
Modifying methods internals however is not possible with metaprogramming
either.

Finally, holistic manipulations also allow changing body internals. In order to
function properly however, holistic manipulations need to access the mechanism
of basic expressions and metaprogramming to write the changes back into the
program. With the string manipulation, we extract the base program, apply the
changes, and reevaluate the relevant part so that even runtime modifications are
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possible. We will see further evidence that only a combination of all programming
mechanisms can truly satisfy the properties to enable FOP in Ruby.

4.4.4 Composition Composition is the final process in which a base pro-
gram and the feature expressions are combined to a valid program. Although
the existing mechanisms seem to offer disjoint functionality, they are invaluable
complements that can address fine-grained composition only in combination.

Table 4 presents what kind of modifications can be applied by a composition
approach. The modifications are add (add expressions), delete (delete expres-
sions), overwrite (replace expressions with other expression), and eztend (ar-
bitrary expression modification). Usually, extend includes add and delete for
whole expressions too. In the table, + means that the modification is added and
= means that the modification type remains.

Table 4: Applicability of composition methods to modify objects

. Object- e s
Object 'g.tt)_]ect Prop- Oriented Metapr.o- H'Ohsltl: Ma-
y Mechanisms | 8Famming nipulations

Name Add = +Extend

Methods Add, Overwrite [+Delete +Extend
Module/Class |Class variables|Add, Overwrite |+Delete +Extend

irbL}sz:nce vare- Add, Overwrite |+Delete +Extend

Body

(Vari- - - +Extend

ables/Procs)

Body (Other) |- - +Extend

Name Add, Overwrite |= +Extend
Methods Parameters Overwrite = +Extend

Body

(Vari- Overwrite = +Extend

ables/Procs)

Body (Other) [Overwrite = +Extend

Name - - +Extend
Procs Parameters - - +Extend

Body

(Vari- - - +Extend

ables/Procs)

Body (Other) |- - +Extend

The table shows how important the combination of the mechanisms is, which
we want to describe further. We first return to the object-oriented mechanisms.
How are the options to use reopening, subclassing, or mix-ins to be evaluated?
We suggest that classes should be used for clean application design with a hier-
archy of objects that reflect a certain structure inside the application domain.
Modules can contain code which either performs global functions or which must
be included at different objects inside the class hierarchy. Small changes to in-
dividual objects could be done with reopening classes and manually write new
methods into the definition. But developers should instead use the metapro-
gramming methods. The built-in metaprogramming operations allow to name
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and identify semantic changes which are to be applied to source code. A combi-
nation of these approaches provides sound mechanisms for a clear design of the
base program.

We now enter the stage of program manipulation. Here, the need for the
metaprogramming capabilities is clearly seen. With alias_method, the body of
a method can be copied, and with remove_method unneeded methods can be
permanently removed. Further, the metaprogramming methods allow finer con-
trol over the changes they apply. But neither object-oriented mechanisms nor
the metaprogramming methods can change body internals of modules, classes,
methods and procs. At this point, the holistic manipulations are needed. Once
the body is transformed to a string or a parse tree with the Ruby2Ruby library,
we can use all manipulations imaginable. The importance hereby lies in the ac-
curate expression of the semantics for the applied changes. The circle of the
composition mechanisms closes with the holistic manipulation. First, they need
the built-in classes to manipulate strings for the regular expressions or arrays for
the parse tree, and then they use metaprogramming methods for reevaluating
the changed code.

4.5 Summarizing Ruby Programming Mechanisms for FOP

We showed and discussed the principal programming mechanisms basic expres-
sions, reflection, metaprogramming, and holistic manipulations. The result is
that only the combination of all mechanisms allows targeting both coarse-grained
and fine-grained modifications. Each mechanism should be used with respect to
its purpose:

— Basic expressions for building the base program in a clear and non-repetitive
way.

— Reflection and metaprogramming to access the running programs structure
and modify it.

— Holistic manipulations to change the otherwise invisible body of methods.

We now turn our attention to the implementation prototypes for FOP in
Ruby.

5 Emnabling Feature-Oriented Programming

In addition to the theoretical discussion, we present two small example imple-
mentations. The goal is to discuss two principal methods and evaluate what
method is more promising into achieving the FOP implementation which satis-
fies all feature properties.

First, we describe a solution that utilizes static comments in a program to
express code changes related to features. The program is read by a parser which
transforms comments into code if the feature is activated, and returns a string
representing the program. This string representation is finally executed with the
explained eval methods.
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Second, we present an implementation that is based on the idea of domain-
specific languages. Such languages represent their domain as a language [24]. In
the case of FOP, this allows us not only to define entities for features, but also
to express them inside the Ruby language.

5.1 Annotations

We had one goal in mind when implementing FOP solutions: The code belonging
to a certain feature should not be declared outside the program in another file,
but close to the place it is actually to be used in. A simple solution to express
code related to features is to annotate it with a special syntax. We decided to
use comments for this.

Ruby has two types of comments. The first one are single line comments
which begin with the hash sign # and stop at the end of the line - it is not
possible to comment parts of a line only. The other option is a so-called heredoc.
These are multiline strings whose delimiter can be chosen freely. »Figure 13
show how to define a multiline string heredoc with the delimiter EOC.

1| herdoc = <<-EOC

2| def set_weight (weight)
3} Qweight = weight
4['end

5| EOC

Fig. 13: Example for a heredoc

This is the basic idea for an annotation-based approach. We decided to use
both normal comments and heredocs, and to include the information to which
feature code belongs either as an additional field in the comments or as the
heredoc delimiters.

Let’s take a look at an example. Our goal is to define the Edge class which
includes methods and attributes for its weight if the corresponding WEIGHTED
feature is activated. In »Figure 14 we see this definition using annotations.
Line 2 shows an in-line comment which names the WEIGHTED feature with the
syntax F!Weighted#. The first part of the line would declare a normal attr_reader
for the source and sink attributes. Invisible to the interpreter is the weighted
attribute. We also see an example using heredocs. Line 4 defines the same syntax
for defining the feature, F!Weighted, and then includes from line 5 to 7 a method
declaration.

Once the whole program has been annotated in this way, the composition can
begin. The central entity is a class called FeatureApplier. Internally, it stores the
list of activated features, the single-line annotations per feature and the heredocs
per feature, the original source code, and the current delta source code. When a
new FeatureApplier object is created, it receives a string containing the program
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1| class Edge

2| attr_reader :source, :sink#F!Weighted#, :weight
4| <<-"F!Weighted"

5] def set_weight (weight)

6 @weight = weight

7 end

8 F!Weighted

9| end

Fig. 14: Using annotations to extend the attr_reader and to define the set_weight
method

and parses the string. Whenever it detects either a single-line comment or a
heredoc, it constructs the resulting source as if the feature would be activated,
and stores it in a hash. After that, users simply call activate_feature with a
symbol argument representing the feature to be activated. The FeatureApplier
will select all transformed lines matching the activated code, and replace the
relevant part of the original, thus creating a new delta. The newly configured
program can be executed by using Module.eval with the delta.

We will discuss the properties of the annotation approach thoroughly after
presenting the Domain-Specific Language approach.

5.2 Domain-Specific Language

Domain-Specific Languages, or short DSL, have a long tradition in computer
science (they go back to a paper by LANDIN [12]), and are becoming a ma-
ture concept in software development. Some very recent examples are modern
telephone support [13], healthcare systems [17], and web applications [26].

The power of a domain specific language lies in its abstraction. By designing
the domain with the “natural” entities and relationships, the domain-knowledge
is expressed as a language [24]. Using DSL effectively, advantages like increased
productivity, efficient code-reuse, and reduction of errors [4] [7] are achieved.

In our case, we generally see a DSL as a programming language, not as a
declarative language which only sets parameters. One compelling characteriza-
tion of a DSL is whether it is realized as internal or external language [4]).

— A external DSL is a separate language in which syntax and semantic can be
defined freely. This requires language creators to manually define a compiler
or interpreter for the language so that actual working code is generated.
Unless the code isn’t transformed to the same code as the application uses,
this approach has limitations.

— The other option is internal DSL. Internal DSL use an existing language as
the base. This means that infrastructure consisting of compilers, interpreters
and even editors for the host language can be used for designing DSL. De-
velopers customize the language by adding keywords which represent the
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domain. Furthermore, they can change - with limitations - the syntax and
language internals.

Dynamic languages are more suitable as host languages because their whole
definition is open to runtime modification. In the following, we sketch an early
DSL for FOP in Ruby.

The central part of the DSL is the way how features are represented. Features
are realized as modules with the following functions.

— activate Activates the feature and makes the features methods callable

— deactivate Deactivates the feature by replacing the feature’s method’s body
with an error message

— code Receives a Proc object which identifies the source code belonging to
the called feature

We now explain step-by-step how to use the DSL. The first part lies outside
using the DSL: One needs to have a model of the product line he wishes to
implement. For simplicity, we will reuse the Graph Product Line introduced in
section 4. Features are created by including the feature module, as shown in the
following »Figure 15. We see that the features WEIGHTED and UNWEIGHTED
are defined as features.

1| class Weighted

2 include Feature
3| end

4

5[ class Unweighted
6 include Feature
7| end

Fig. 15: Defining features

In the next step, we analyze what parts of the program belong to the iden-
tified features. The respective code, be it whole blocks like method definitions
or just individual lines, are put inside a block and called with the code method
of the Feature module. For example, the attribute weight is only set in the Node
class if the WEIGHT feature is set. The code may look like in »Figure 16.

1| class Node

2 attr_reader :value
3 ] Weight.code { attr_reader :weight }
4| end

Fig.16: The Weight class containing code related to the WEIGHT feature
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Once all the code is implemented this way, the program is ready to be ini-
tialized. They put the whole program inside a Ruby Proc object and hand it
over to a module called FeatureResolver. This module handles the internals of
feature activation and deactivation. The details are as follows:

— Each class which includes the Feature module registers itself with the
FeatureResolver

— The FeatureResolver stores the class’s name in an Array, and stores all
methods in an Hash with the key class_method-name

— For the case that the Feature becomes deactivated, altered methods are
stored in another array: “Deactive” methods just raise an error saying that
the Feature is not activated and the method can’t be called. The discussed
Ruby2Ruby library is used to parse the method, select all method names, and
then to use the method names together with the instance_method method
to create UnboundMethod objects which are stored inside the hash

— If a feature gets activated, the corresponding active methods are defined via
the class_eval method

— If a feature gets deactivated, the corresponding deactivate methods are de-
fined, again via class_eval

Once the program is loaded, features can be activated in arbitrary order -
the composition order plays no specific role.

We now continue with the explanation of how the suggested feature properties
are satisfied by the annotation approach and the DSL approaches.

5.3 Evaluating the Feature Properties

In the following Table 5, we discuss side-by-side how the annotation approach
and the DSL approach score with respect to the feature properties.

We can clearly see that using a DSL has much more potential then anno-
tations. In our view, the biggest advantage is that features are entities of the
language, which allows other parts of the program to query them for information
regarding their status. Comparing to other FOP approaches, it is also not re-
quired to use any external structure, not even a separate source file, to view the
code belonging to a feature. Developers can focus more on the code because the
identification and expression properties are represented the same entities that
implement features. With this result, we decide to advance the DSL approach.

6 Related Work

The support for explicit FOP in Ruby is in a very basic state. To the best of
our knowledge, no full libraries have been developed. Outside scientific publi-
cations, blogs of Ruby developers assume that Ruby’s capabilities are naturally
so powerful that no explicit support of FOP is necessary [6]. However, from the
viewpoint of software product lines and the need to express variations in the
software, this view is to question.
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Table 5: Comparing Annotations and Domain-Specific Languages with respect to sat-
isfying the feature properties

[ Property | Annotation Domain-Specific Language
Naming No explicit entities are created, features Each feature is a class which is
are just described as names inside represented as a constant too. Defined in
comments. Features are not known to the top level, every feature is available
other entities, which makes interaction and known in all expressions.
with other program constructs difficult.
Identification| Identification is a external process the |The developer is solely responsible for the
developer undertakes. He recognizes which| identification too. Once the belonging
part belong to a feature, and is parts are found, he uses an extended
responsible for putting them in syntax to describe the feature related
annotations using comments. code. The code is fully accessible by the
program. Furthermore, the developer thus
stays more closely to the program he is
working on.
Expressing Central entity is the FeatureApplier, Central entity is the FeatureResolver ,
which receives the program as a string, which receives the program as a proc
receives activation and deactivation calls, object. Feature activation happens
and changes the program string directly with the features. Code belonging
representation accordingly. to a feature is updated according to
features’ activation status.
Composition | Currently only changes the string, which |Directly applies the changes on the source
needs to be evaluated in a Ruby code basis. Feature are activated typically
environment to work. at runtime, but variants can be configured
statically from the outside.

Instead of FOP, we found some alternatives in Aspect-Oriented Programming
(AOP). Bryant and Feldt build the first AOP library in Ruby, but their work
was not continued since 2002 [3]. One recent approach is Gazer [25]. It is a small
language to define aspects as methods refinements, which can call code before
or after the method body. An example of a sophisticated AOP implementation
in Ruby is Aquarium.

In Aquarium?®, aspects are represented as classes. The classes are subject to
various parameters for the scoping of the aspect. These parameters express the
classes, methods (concrete name, selected by visibility, confirming to a certain
pattern) and the type of the aspect (after, before and around the original source
code, or for special cases like raising exceptions). The code to evaluate is given
as a block. Aquarium saves the changes applied to methods, and it is possible
to reverse them too. Aquarium is subject to further development. Its developers
have defined the future scope of the library and are continuously developing next
releases.

Another approach to modularize software with dynamic languages in gen-
eral is context-oriented programming (COP). COP defines independent layer in
which objects reside. In each layer, they have changed behavior and data. COP
allows to define fine-grained message definition to reflect the different states [8].
ContextRS is a COP library in Ruby. ContextR defines a language level expres-
sion for COP. Contexts are naturally expressed as context classes. Objects of
the domain can activate a certain context to change their appearance or state to

® http://aquarium.rubyforge.org/
5 http://contextr.rubyforge.org/
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the outwards. Per context, all objects are visible to each other. The mentioned
messages rules are also expressed at language level within ContextR.

7 Summary and Future Work

This paper presented a detailed introduction to FOP. We covered core termi-
nology and characteristics of features, provided the graph product line as a
cohesive example and explained shortly the most important properties of the
Ruby programming language. After that background material, we researched
the mechanisms Ruby gives developers to implement FOP. Naturally, it was
difficult to separate the mechanisms. Ruby is very flexible and allows multiple
ways to express the programmer’s intentions. For method extension alone, Ruby
allows four different methods. After detailed descriptions with various examples,
we found out that the seemingly orthogonal methods complement each other.

At first, we need to decompose the application using modules, classes, and
methods to reflect the hierarchy of domain concepts and provide modularized
code which is used in many objects. Then, we add metaprogramming facilities
to have modification ability depending on program conditions. And finally, we
use holistic manipulation approaches like parse tree modification to change body
internals of the core objects.

We then compared two basic implementations. We saw that using interpreter-
unaware annotations as comments is an implementation option, but has difficul-
ties in complex feature scenarios. But the DSL approach provides named entities
representing features and a minimal syntax to express them at the place they
are composed in. Thus, we will further advance the DSL approach.
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